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PREFACE 

LETTRE A MA FILLE ... 

La THESE est le point d'orgue du parcours universitaire. 
Elle empanache son concepteur d'une aura particuliere : l'ouvrage prend 
dignement place sur les rayons de la bibliotheque du discours scientifique. 

La These marque l'aboutissement d'un heritage. 
Elle prouve la pertinence de l'effort. 

La These acheve la ceremonie rituelle de reconnaissance scientifique. Elle 
est la lettre de creance de l'utilite scientifique et sociale et de la competence 
du chercheur. 

Le ceremonial de cet ultime passage demontre cela : les lecteurs se partagent 
le double role du dedans et du dehors. Si le discours du chercheur est buisson­
nier, il est neanmoins inscrit clans le paysage mental du discours scientifique 
tel qu'il est dessine par les architectures ou les urbanistes du savoir. 

L'aveu final de cette reconnaissance s'effectue clans un dernier combat. 
La presentation de l'oeuvre s'assure une defense. 
Le jury enquete et le candidat plaide : il est une derniere fois suspecte. 
Dans le maquis du savoir et du pouvoir, la These est le mot de passe de 
l'adoubement scientifique et social. 
La These est l'expose d'une requete : une demande de filiation. 

Si la These est expose, elle est aussi temoignage. 
Temoigner est apporter des preuves. Prouver c'est montrer une capacite. 
Dire sa capacite, c'est nommer sa competence. Etre competent, c'est signi­
fier son utilite. 

La These se rattache a une tradition humaniste et universitaire qui apprecie 
le formel et qui consacre le mot. 
Ne vaut que ce qui se nomme. 
L'ecrit consacre la maitrise de la chose : pas de religion, sans prophetie, pas 
de sorcellerie sans formule, pas de politique sans discours. 
Le mot exorcise l'action. Le mot convoque !'action. 



L'ecrit est une valeur de culture et de civilisation ; 
L'ecrit est trace ineffa<;able. Il enracine le present. 
La These rend infiniment present : elle est le temps continue, prolonge. 

La These serait le repere archeologique de notre savoir. 

La These surpasse en importance tout le reste. 
Non seulement elle paraphe le parcours universitaire mais elle le mesure a lui 
tout seul. 

Chere Kathy, 

Durant vingt-trois ans, tu t'es precipitee aux sources de la connaissance. 
Durant vingt-trois ans, tu as ingere, tu as digere, tu as mache, tu as triture 
de nombreux champs du savoir. 
Durant vingt-trois ans, tu as reflechi, tu as exerce, tu as affine tes competences 
et tes qualites. 
Durant vingt-trois ans, a l'appui de tes travaux, tu as exprime ta reflexion, 
son etendue et sa diversite. 

Eh bien ! Sais-tu quoi ? 

Tout cela n'est rien. Rien, tu m'entends, rien. 

La These, en quelque sorte, enterine clans sa sanction l'incompetence de ta 
pratique, de ton savoir et son inconvenance sociale et scientifique. 

Tout sera a recommencer .. . Si tu le veux ! 

Voila ce que m'inspire, vois-tu, la redaction de ta These. 
Elle s 'inscrit clans un ensemble. 
Elle participe ace jeu scientifique et social dont j'essaie en vain de te dessiner 
les imbrications complementaires. 

Tu arrives a la fin mais tu auras l'impression d'etre au seuil. 
Debutant ta formation universitaire et scientifique, tu t'interrogeais sur son 
issue. 
L'achevant, tu vas questionner tes commencements. 
Tu vas remiser le doute, non la certitude de la question. 



Choisis done l'interrogation de l'eternel recommencement. 
L'interrogation du choix devient questionnement du soi. 
L'itineraire scientifique et social devient cheminement de l'incontournable et 
de l'indicible. 
Soi-meme a soi-meme toujours repete. 

Tout est en place. Le savoir est pose, la connaissance est assise, l'experience 
est ref:lechie. 

Tout est en place ... Tout peut commencer. 

J'avais cru de bonne foi achever ma peripetie prefacielle. 
u n hoquet a etouff e ma relecture. 
Je me suis precipite sur ma plume implorant les manes de nos ancetres qui 
ont deja gagne leur salut et les <lieux irascibles qui m'auraient alors vole le 
mien. 

J'ai eu une curieuse impression. 
La ressemblance de nos traits m'a frappe. 

Je me suis dit : tiens comme le lien familial deteint ! 

Ce sera le mot de notre fin provisoire. 

Chere Kathy, bonne route ... 

Jean Huet. 



A mes parents. 
A Bernard. 



"L'esprit experimental accomplit sa marche en s'appuyant a chaque pas 
sur l 'observation des faits et des situations. Il soumet la pensee a 
l 'experience et recherche la realite objective. Il possede l 'art 
d'interroger correctement la nature et de lui poser des questions justes, 
soucieux de verifier rigoureusement Les reponses par un controle 
methodique. Ce souci predominant d'objectivite lucide et modeste 
conduit l 'homme a subordonner ses idees, ses jugements et ses normes 
non pas a des opinions toutes faites repandues dans un milieu, ni a des 
sentiments si eleves soient-ils, ni a des principes meme traditionnels, mais 
a l 'experience des fa its. " 

Pierre Angers in "Problemes de culture au Canada fran\:ais", Montreal, Beauchemin, 1961. 
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Outlines 

According to the Standard Model, theoretical model which describes the 
strong and electroweak interactions, the fermion-antifermion pairs resulting 
from the collisions between electrons and positrons at centre-of-mass energies 
close to the zo mass, are emitted in an asymmetric way with respect to the 
direction of incidence. This forward-backward asymmetry in the case of the 
production of bb and cc pairs has been measured by experiments at the LEP 
collider. The measurement of the production asymmetry of ss pairs is an 
important complementary test of the Standard Model. 
In this thesis, we present for the first time in details a measurement of the 
ss asymmetry from the analysis of the data collected in 1994 at LEP with 
the DELPHI detector. Actually, the ss asymmetry has been deduced from 
the angular distribution of high momentum charged kaons which have been 
identified individually thanks to the unique facility of DELPHI with its Bar­
rel and Forward RICH detectors. Therefore, this measurement depends on 
the thorough knowledge and control of the performances of such detectors. 
The original method that we have settled to extract the ss asymmetry from 
the experimental charged kaon asymmetry allowed us to obtain the following 
precise value: A~8 = 0.114 ± 0.019(stat.) ± 0.005(syst.). 

The present thesis is organised as follows : 
In chapter 1, the theoretical context of the Standard Model is presented. 

A description of the experimental apparatus with emphasis on the new de­
velopments and performances since the DELPHI detector has been just in 
operation is given in chapter 2. The end of the chapter is devoted to the 
procedure used to convert raw data produced by the detector into standard 
physics quantities and to the simulation program used to verify the signifi­
cance of the measurements. 

The definition of the Cherenkov effect, the description of the Ring Imag­
ing CHerenkov detectors which equip the DELPHI experiment as well as 
their performances are given in chapter 3. 

In chapter 4, the presentation of the theoretical formalism used to describe 
the process e+ e- -+ zo -+ ss with emphasis on cross-section and asymmetry 
is presented. 



Chapter 5 and 6 cover the present measurement with a description of the 
experimental procedures relevant for the analysis in the former and the com­
plete and detailed presentation of the method used and the results obtained 
in the latter. 

We conclude in chapter 7. 
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Chapter 1 

Theoretical Overview 

1.1 Introduction 

Identifying the ultimate constituents of matter and understanding the forces 
that govern their behaviour are fundamental concepts in particle physics. 
Nowadays, we distinguish four types of fundamental interactions. Two of 
them act at the macroscopic scale : the Gravity and the Electromagnetic 
interactions while the two others operate at the atomic nucleus scale : the 
Strong interaction and the Weak interaction. These four interactions are 
characterized and distinguishable by their action range and by coupling con­
stants, numbers without dimension which determine the interactions inten­
sity (see table 1.1). 

Gravity Weak Electromagnetic Strong 
Range (cm) 00 fV 10-15 00 fV 10-13 

Lifetime (s) - fV 10-10 fV 10-16 fV 10-22 

Coupling Constant 10-39 10-s ,;7 ,...., 10-2 1 

Table 1.1: The four interactions and their characteristics. 

We notice the small value of the Gravity coupling constant which implies 
that it does not operate at the level of elementary particles. 

One distinguishes two families of elementary particles according to the fact 
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that they are subject or not to the strong interaction : the hadrons and the 
leptons, respectively. 

The lepton family is made of three generations of spin 1/2 particles : the 
electron ( e) and its neutrino (ve), the muon (µ) and its neutrino (v1i) and the 
tau (r) and its neutrino (vr)· One of the most important result of LEPlOO 
is that only three types of neutrinos similar to these ones exist (see table 1.2). 

Mass/' Leptons Quarks 
e lie d u 
µ v,, s c 
T Vr b t 

Spin 1/2 fermions 
Charge -1 0 -1/3 2/3 

Table 1.2: The elementary particles. 

The hadron family is divided into baryons (half spin) and mesons (in­
teger spin). These particles are not considered as elementary anymore but 
resulting from the assembly of spin 1/2 fundamental particles : quarks (q) 
and antiquarks (q) according to a simple and general architecture : baryon = qqq, meson = qq. These fundamental entities of matter show independent 
properties without being observable at the free state (this leads to the con­
fining hypothesis). 

Like the leptons, the quarks are made of three generations (see table 1.2). 
Unlike the leptons, each quark exists in three different species distinguished 
by a "colour". The colour acts as a charge to which the Strong interaction 
is sensitive. 

All the fundamental interactions (except Gravity) are described by theo­
retical models which present the same mathematical structure characteristic 
of gauge theories. 
According to gauge theories, the interactions between the matter particles 
(leptons and quarks) would result from the exchange of vector bosons called 
gauge bosons. 

The first of these theories is the Quantum Electro Dynamics ( QED) which, 
at low energy, describes satisfactorily the electromagnetic interaction, the 
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interaction between charged particles through the exchange of a photon. 

This theory has then been extended to lead to the Weinberg-Salam model [3] : 
a gauge theory elaborated to describe weak and electromagnetic processes 
(exchange of w±, zo and I, respectively) in the same theoretical framework. 

The gauge theory describing the strong interaction between quarks is called 
Quantum Chromo Dynamics ( QCD). In this case, quarks interact through 
the exchange of coloured gauge bosons called gluons. Together with the 
Weinberg-Salam model, QCD forms the so-called Standard Model (SM). 

1.2 The gauge theories 

In the framework of a Lagrangian field theory, the dynamics is specified by 
the Lagrangian density £, which is a function of the various fields 'I/Ji and 
their space-time derivatives 8µ1/Ji : 

( 1.1) 

The index i stands for the different types of matter fields of interest (we drop 
this index i for simplicity). 

A gauge theory, a particular class of field theories, is built on a local 
symmetry property : a physics system made of interacting matter particles 
{leptons and quarks) shows a local symmetry if the controlling rule of its 
time evolution is invariant under a transformation group which can be ap­
plied differently at each space-time point. 

The construction of such a gauge theory starts from a Lagrangian for free 
matter particles which is invariant under a group of global transformations 
(same at each space-time point). This Lagrangian is then transformed such 
as to be invariant for local transformations. This can only be achieved by 
the introduction, in the Lagrangian density, of vector fields (the gauge fields). 
It happens that these gauge fields interact with matter fields in a well pre­
scribed manner. 

A gauge theory describes then the interaction between matter particles through 
the exchange of vector bosons, particles associated to the gauge fields. 

In the so-elaborated formalism, these gauge bosons are massless which leads 
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to interactions of infinite range. Such a theory is thus not suitable to describe 
the weak interaction which is short range and therefore requires the exchange 
of corresponding heavy bosons. This problem has been solved by using the 
so-called Higgs mechanism (section 1. 3). 

What follows is partially inspired by the Maiani CERN School lectures [1]. 

1.2.1 The Quantum Electro Dynamics (QED) 

Quantum Electro Dynamics is the classical gauge theory which describes the 
interaction between charged particles through the exchange of photons. 

This gauge theory is based on the symmetry group U(l) and can be built as 
described below : 

•We consider a Lagrangian density for free charged fermions Lfree which 
satisfies the global symmetry U(l). For each charged fermion (spin 1/2 fields) 
the corresponding Lagrangian can be written as : 

(1.2) 

/µ are the 4x4 Dirac matrices (see appendix A) and 'I/; is a Dirac spinor. 
Lfree is invariant under global phase transformations such as : 

(1.3) 

with a being a constant. 

• The "minimal prescription", is then adopted. It consists in replacing 
the derivatives 8µ by the covariant derivatives D µ : 

(1.4) 

Aµ being vector fields and e being an arbitrary constant. 
For each matter fermion, we obtain the following new Lagrangian density 

£('1/;, Dµ'l/;) : 

with 

£('1/;, Dµ'l/;) = 'l/;(i/µ(8µ + ieAµ) - m)'l/; 

= 'l/;(i/µ8µ - m)'I/;- e'l/;1µAµ'l/; 

= [,free + Lint 

(1.5) 
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which expresses the interaction of the matter field 'I/; with the electromagnetic 
field Aw The above constant e acts as the electric charge. 

We notice that the Lagrangian density C( 'I/;, D1,'lj;) is invariant under : 

'I/;--+ 'I/;'= 'I/; expa(x) (1.6) 

with a( x) an arbitrary function of the space-time coordinates x, if the elec­
tromagnetic field simultaneously transforms as : 

(1. 7) 

In such a way, D µ'I/; transforms as 'I/; : 

(1.8) 

• The Lagrangian density C( 'I/;, Dµ) has to be completed by a kinetic 
energy term for the electromagnetic field Aµ (to describe the propagation of 
the gauge fields (Klein-Gordon equation)) : 

(yM = -~Fµv(x)F'w(x) (1.9) 

called the gauge invariant Yang-Mills Lagrangian density, where 

(1.10) 

is the electromagnetic tensor whose elements are the different cartesian com­
ponents of the electric field E and of the magnetic field H. These elements 
are invariant under the gauge transformations 1. 7. 

The total Lagrangian density can finally be written for matter fermions as : 

(1.11) 

1.2.2 The Weak Interaction 

A theory which describes the weak interaction (appearing in the nuclear {3-
decays) was formulated for the first time in 1934 by Fermi. 
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Figure 1.1: /3-decay in the weak interaction : (a) according to the Fermi 
point-like theory; (b) the same interaction explained in terms of the exchange 
of a w± boson. 

This theory describes the interaction n --+ p + e- + Ve as a four-particle 
contact interaction as shown in figure 1.1 (a). 

The (relativist invariant) amplitude is written in its general form as the 
sum of Lorentz invariant terms of the type" product of two currents and a 
coupling constant " : 

A= :L Gi('l/Jp0i'1Pn)('l/Je0i'1Pv) (1.12) 
l 

where: 

- 'l/;k are Dirac spinors ( k = p, e, n, v) 

- the index i represents the different covariant forms : Scalar (S), Vector 
(V), Axial (A), Tensor (T) and Pseudo-Scalar (PS) 

- Gi is the coupling constant relative to the interaction i 
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- oi is the matrix operator corresponding to the interaction i : 

s : oi = 1 

v : oi = I:µ,µ 

A : Oi = 2:1, 'Yµ'Ys 

T : Oi = l:µ l:v;t:µ 'Yµ'Yv 

PS : Oi = 1 5 

8 

In 1956, Lee and Yang concluded that the weak interactions do not conserve 
parity, and thus that the theory is not invariant under spatial inversion. 

The Fermi theory (for which experimental results had already rejected S, 
PS, and T interactions) was then reformulated such as to allow for parity 
non-conservation and to take into account the experimentally observed (V­
A) behaviour of the weak interaction, leading to the so-called V-A theory in 
which the amplitude for such a process (figure 1.1 (a)) is proportional to : 

(1.13) 

But according to this point-like interaction theory, neutrino-nucleon interac­
tion cross-sections would increase to infinity with energy and would violate 
the "unitarity limit". A solution to this problem was found by considering 
that the weak interaction proceeds through the exchange, between matter 
particles, of bosons called "intermediate vector bosons"' w+ and w- (see 
figure 1.1 (b)), instead of occurring at a unique point. 

At low energies, the weak interaction is well described by the Fermi theory. 
So, if weak interactions are to be mediated by vectors bosons (W), these 
must be heavy enough to reflect the corresponding short range behaviour of 
this interaction. This is a consequence of an exchange model : mass is in 
inverse proportion to range. 

Some years afterwards (1973), the neutral currents have been discovered 
in neutrino-nucleon interactions. This discovery led to postulate the exis­
tence of a third intermediate vector boson : the electrically neutral zo which 
(together with the w+ and w- bosons) has effectively been found at the 
CERN pj5 collider [2]. It was the first experimental verification of the model 
elaborated in 1968 by S. Weinberg and A. Salam. 
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S. Weinberg and A. Salam proposed a gauge theory to unify weak and elec­
tromagnetic interactions. The procedure to build a gauge theory as see in 
subsection 1.2 can be generalised to the SU(2)xU(l) group as follows: 

• We start from a Lagrangian density .C = Li .C( 7/Ji, 81i1/Ji) for free par­
ticles globally invariant under the group SU(2)xU(l), i.e for the following 
infinitesimal transformations : 

.!, .!.' .!, . a 'Ta.!, . , 1 ll·'· 
'f'i --+ 'f' i = 'f'i + 'LE 2 'f'i + 'LE 2 'f'i (1.14) 

where: 

- a=(l,2,3) 

- 1/Ji are Dirac isospinors satisfying equation 1.2, the Dirac equation. 

- The index i stands for all types of isospinors of fermions. 

- Ea and E
1 are arbitrary infinitesimal constant parameters. 

- 1I is the 2 x 2 unit matrix. 

- Ta are the 2x2 Pauli matrices1 which represents the SU(2) group genera­
tors. They satisfy the commutation rules : 

[
Ta 'Tb] _ . 'Tc 
2' 2 - 'LEabc2 

where Eabc is the totally antisymmetric tensor2 . 

•We then transform the Lagrangian density .C( 7/Ji, 8µ1/Ji) into a Lagrangian 
density which is invariant under local transformations (transformation 1.14 
with Ea _ Ea( x) and E

1 = E'( x) ) via the minimal prescription : 

!::! 't"7 - !::! • Aa Ta . 'Ba 111 Vµ --7 V µ = Vµ + ig µ 2 + ig µ 2 
with the introduction of : 

2 

(
0 -i) Tz = i Q 

if { abc} is an even permutation of { 123} 

if {abc} is an odd permutation of {123} 

otherwise 

(1.15) 
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- four vector fields (gauge fields), one per generator : 

an isotriplet A~ (a=l,2,3) for the SU(2) group 

a singlet B µ for the U ( 1) group 

- two arbitrary constants, one per group : 

g for the SU(2) group 

g' for the U(l) group 

10 

The resulting Lagrangian density £( 'ljJ, \7 µ 'ljJ) is invariant if the four intro­
duced gauge fields are simultaneously transformed as follows : 

A~-+ A~ - Eabci(x)A~ - !OµEa(x) 
g 

Bµ-+ Bµ - ~8µE1 (x) 
g 

(1.16) 

It describes the interaction between matter particles through the exchange 
of gauge bosons associated to the gauge fields, g and g' acting as coupling 
constants. 

•The resulting Lagrangian C('lj;, Vµ'l/J) has to be completed by the gauge 
invariant Yang-Mills Lagrangian density to describe the propagation of the 
gauge fields (they must obey the Klein- Gordon equation) : 

where 

F:v = OµA~ - OvA~ - 9€abcAtA~ 
Gµv = OµBv - OvBµ 

The whole Lagrangian density can be written as : 

[, = £(·1• \7 •1.) _ !pa (Fa)µv _ !a a1w tot 'f/' µ 'f/ 
4 

µv 
4 

µv 

( 1.17) 

(1.18) 

(1.19) 

Let us remarks that, for a free boson (spin 0 complex fields), the Lagrangian 
density is : 

(1.20) 
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Considering then that the development of Ltot does not contain any quadratic 
terms in the gauge fields A~ and Bµ, we are led to conclude that the gauge 
bosons associated to these gauge fields are massless. This is incompatible 
with the short range character of the weak interaction : the gauge bosons 
have to be heavy. 

In the next section, we will see how by 'Spontaneous Global Symmetry Break­
ing', the gauge bosons can acquire a mass. 

1.3 The Higgs phenomenon 

In the previous section, we have shown that because of its observed short 
range nature, the weak interaction has to be mediated by massive bosons. 
The gauge theory described above has then to be expanded in order to in­
clude massive gauge bosons. A method to deal with this problem was put 
forward by P.W. Higgs [4] and F. Englert and R. Brout [5] independently. 
This method, based on the 'Higgs Mechanism', is referred to as the 'Spon­
taneous Symmetry Breaking Mechanism'. It provides a mass to the weak 
force mediators (the so-called intermediate bosons : w± and z0

) while the 
mediator of the electromagnetic force (the photon ! ) remains massless. This 
has been made possible by the introduction of a scalar field : the Higgs field. 

The Higgs mechanism considers a scalar isodoublet <p for which the gauge 
invariant Lagrangian density LHiggs is given by : 

LHiggs = (Dµ<p+)(Dµ<p) - µ 2 <p+<p - A(<p+<p) 2 

= (Dµ<p+)(Dµ<p) - V( <p+<p) 
(1.21) 

where V ( <p+ <p) is a self-interacting potential and D1i is defined as before. 

<p is the scalar isodoublet : 

(1.22) 

'Pi are complex fields. 
LHiggs is invariant for the SU(2)xU(l) gauge group, the field <p transforming 
like the matter fields in presence. The parameter >. is chosen such that 
>. > 0 to ensure the corresponding Hamiltonian to be 'down-limited' for all 
the configurations of the field <p. Choosing : 

µ2 < 0 
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the field cp can take a vacuum mean value different from 0. This produces a 
spontaneous symmetry breaking which leads to massive gauge bosons. 

as: 
In the Minimal Weinberg-Salam model, the Higgs field has been chosen 

cp(x) = ( +Ou(x)) 
'r/ 72 

(1.23) 

(rJ = H- is the vacuum mean value of the field cp at all space-time point). 

In 1.21, the development of (Dµcp+)(DJLcp) shows terms which are of sec­
ond order in the fields A~ (a= 1, 2, 3) associated to the SU(2) symmetry and 
Bµ fields associated to the U(l) symmetry. These terms are : 

- terms in A~ in one hand, and in A~ in the other hand, whose coefficients 
( ~g2 ry2 ) are interpreted as being the mass squared associated to the 
corresponding gauge bosons (A1 and A2 from which the physical gauge 
bosons w± will be built). 

- mixed terms in A~ Bµ which have no direct physical interpretation. These 
terms can be eliminated from the theory by defining the two following 
orthogonal combinations : 

Zµ =A! cos Bw - Bµ sin Bw 

Aµ = A! sin Bw + Bµ cos Bw 
(1.24) 

with Bw, the Weinberg-Salam angle or weak mixing angle, chosen such 
that mixed products of Zµ Aµ disappear. This is achieved by putting: 

g' 
tanBw = -

g 
(1.25) 

Applying this substitution in the development of £Higgs' the following 
term is found : 

1 2 2 
( g 'r/ )Z z1L 

2 2 cos2 B µ 
( 1.26) 

whose coefficient is proportional to the mass squared of the zo boson 
associated to the field Zw 
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- The absence of terms in AµAµ leads to assign a massless boson to the field 
Aµ. This boson will be identified as being the photon / · 

The three resulting masses are then : 

2 2 

Ma, = g 
2
'T/ for AJ, and A~ (1.27) 

Mfir --- for Z1, cos2 Ow 
(1.28) 

M~ = 0 for A1, (1.29) 

A term of second order in the field (j (to which the Higgs boson is associated)) 

shows up also in the development of the Lagrangian density [,Higg.9 1.21 
( H-2µ2)(j2) which leads to the existence of a massive neutral scalar particle, 
the so-called Higgs boson H 0 with mass : 

MHo = J-2µ 2 (1.30) 

Therefore, the mass of the Higgs boson is not predicted and must be deter­
mined experimentally. 

The real gauge fields A! and A~ can be replaced by the complex fields : 

(1.31) 

w+ = -
1
-(A1 

- iA2
) 

µ ../2 µ µ (1.32) 

• w; and w: are identified as the fields corresponding to the charged in­
termediate bosons w- and w+. 

• Zµ is identified as the field corresponding to the neutral intermediate boson 
zo. 

• Aµ is identified as the electromagnetic field associated with the photon. 
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Let us go back to the expression 1.24 and express the terms containing 
A~ and Bµ as functions of Aµ and Zµ, we get : 

73 g' g T3 
gAµ- + -

2 
Bµ1I = gsin8wQAµ + --

8
-(-

2 
- Qsin2 8w)Z1l 

2 cos tu (1.33) 

with Q = ny3 
• 

The coupling constant associated to the massless field A11 (the electric charge 
e) is then identified to be : 

e = g sin 810 ( 1.34) 

1.4 The Standard Model 

As explained in section 1.2.2, S. Weinberg and A. Salam have proposed a 
gauge theory to unify weak and electromagnetic interactions, which together 
with the QCD theory is called : the Standard Model. A concrete model for 
the weak and electromagnetic interactions of known leptons ( e, ve, µ and 
vµ) and hadrons (quarks) based on the gauge group SU(2)xU(l) can now be 
developed taking into account the V-A type of the weak interaction coupling. 

1.4.1 The lepton case 

Let us introduce the chiral isospin generators of SU(2)L and SU(2)n : 

(a=l,2,3). 

La= 1 - /5 Ta 
2 2 

Ra = 1 + /5 'Ta 
2 2 

(1.35) 

For massless particles, 1~15 are the projectors respectively on the states of 
positive and negative helicity. Therefore, La acts only on negative helicity 
states (= left-handed states), while Ra acts only on positive helicity states 
(= right-handed states). 

The leptons are grouped in weak isospin multiplets. For simplicity, let us 
consider only two multiplets. The generalisation to three is straightforward. 

E=(~) M=(~) (1.36) 
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We define the action of an infinitesimal SU(2)L transformation (oL) such 
that: 

(where a=(l,2,3)) 

oLE =if.a La E 

oLM =if.a La M 
(1.37) 

This transformation corresponds, for massless particles, to an isospin rota­
tion of the left-handed states, the right-handed states remaining unaffected. 

We can then define the following left-handed doublets : 

such that : 

hE = OLEL 

OLM= hML 

(1.38) 

(1.39) 

while the right-handed fields behave like weak isosinglets en, (ve)n, µn, 
(vµ)R : 

(1.40) 

At this point, we have to specify the action of the U(l) transformations which 
are defined to satisfy the requirement that the electromagnetic field Aµ (see 
equation 1.24) couples to the lepton electric charge : 

(1.41) 
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where x is defined as : 

(ve)L 
eL 

(vµ)L 
µL 

x= (1.42) 

(ve)R 
µn 

Y being the so-called weak hypercharge which is a quantum number associ­
ated to each type of matter particles (L or R). 

The coupling of the matter particles x to the neutral gauge bosons A1, and 
z µ are 0 btained from the development of the Lagrangian terms ( i xD µ 11' x) : 

£ = -x1µ(AµgsinBw(L 3 + ~Y) 

+ Zµ_f!_e (L3 
- sin2 Bw(L3 + ~Y))x 

cos tLJ 2 

(1.43) 

From the coupling of the electromagnetic field Aµ to the field x, the following 
condition have to be satisfied : 

( 1.44) 

which determines for each type of matter particle the weak hypercharge Y, 
once the electric charge Q and the third component of the weak isospin L 3 

are known. 

This condition leads to build table 1.3 which gives the weak isospin and the 
weak hypercharge for left-handed and right-handed leptons. Let us notice 
that, Q and £ 3 being diagonal matrices, so is Y, and U(l) transformations 
act, in this case, as phase transformations. 
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Table 1.3: Electric charge ( Q), third component of the weak isospin (L3 ) and 
weak hypercharge (Y) for the different weak isospin multiplets. 

The coupling to the Zµ field is made through a linear combination of the 
currents associated to the electric charge and the third component of the 
weak isospin (L3 - Q sin2 Bw)· 

1.4.2 The quark case 

A quark model, based on a similar method than the one used for leptons, can 
be built. The Cabibbo theory postulates that the weak interaction transforms 
a u quark into a state which is a linear combination of the strong eigenstates 
d and s: 

(1.45) 

where Be is the so-called Cabibbo angle, the mixing angle between the d and 
s quarks participating in the weak interaction. 

The orthogonal doublet was introduced by Glashow, Iliopoulos and Maiani 
in 1970, containing a new quark (the c quark) : 

(1.46) 

For these two generations of quarks, the Lagrangian density for the charged 
current (CC) part of the interaction can be written : 

.Ccc = - 2~w:u1µ(l - 15 )(d cos Be+ s sin Be) 

- 9;;:;w:c1µ(l-15 )(s cosBc-d sinBc) + h.c. 
2v2 (1.47) 

Like in the lepton model, (~) L and (s:) L are assumed to be weak isodou-
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blets and UR, dR, cR, SR weak singlets. The Lagrangian density becomes : 

.c _ g +( __ ) (cos Be sin Be) (dL) h 
CC - - r;:; Wµ ULCL fµ · 0 0 + .C. v 2 - sm c cos c s L (1.48) 

The formalism has been extended by Kobayashi and Maskawa (1973) to 
take into account the existence of two additional quarks by replacing the 
2x2 Cabbibo matrix by the so-called Kobayashi-Maskawa 3x3 matrix. The 
additional quarks are the t quark and the b quark. For three generations the 
charged current (CC) part of the Lagrangian density is : 

(
Vud Vus Vub) (d L) 

.Ccc = - ~w:(uLc£fL)1µ Vcd Vcs Vcb sL + h.c. 
Vtd Vts Vtb h (1.49) 

The matrix V is called the Kobayashi-Maskawa matrix. The elements can 
be expressed in terms of four parameters : three mixing angles Bi ( i = 1,2,3) 
and one phase 8. 

1.4.3 Quark coupling to the z0 

Let us consider all the Lagrangian density terms which contain the interaction 
between quarks and the zo boson. Putting them together, we obtain the 
following condensed form : 

_g_Zµ(X!µ L 3x - sin2 Bwx1µQx) 
cos Bw 

with x a column vector containing all the quark fields : 

UL 
(dc)L 

CL 
(sc)L 

tL 

x= (bc)L 
UR 

(dc)R 
CR 

(sc)R 
tR 

(bc)R 

(1.50) 

(1.51) 
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L 3 and Q are diagonal matrices giving the eigenvalues corresponding to the 
different elements of X· These values are summarised in table 1.4. 

Q ~ -1/3 2/3 -1/3 3 
L3 1/2 -1/2 0 0 
y 1/3 1/3 4/3 -2/3 

Table 1.4: The electric charge (Q), the third component of the weak isospin 
(L3 ) and the weak hypercharge (Y) for the different weak isospin multiplets 
(quark case). 

Let us analyse each term of 1.50 : 

• The first term : X/µ L3x can be developed as : 

1{ -=2 ih/µUL + CL/µCL + tL/µtL 

- (dc)L!µ(dc)L - (sc)L/1i(sc)L - (bc)L/1i(bc)L} (1.52) 

We notice that quarks couple to the zo without any modification of 
their flavour. 

• The second term : - sin 2 BwX/µQx gives : 

sin2 Bw{ ~(2u1µu + 2c1µc + 2f11it 

- dc/µdc - Sc/µSc - bc/µbc} 
(1.53) 

taking into account that qL + qR = q, q standing for each quark type. 

If we note the elements of x : XL and XR, such that : 

the terms 1.50 become : 

XL= ~(1 - / 5)X 
2 

1 
XR = 2(1 + / 5)X 
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_!!_e Zµ{XL/µ LixL - sin2 BwXL/µQxL 
cos tv 
- sin2 BwXR/µQXR} 

( 1.54) 

(1.55) 

It is often convenient to write 1.55 in terms of the so-called vector and axial 
vector couplings, VJ and aJ , defined respectively as : 

VJ = Li - 2Q sin2 etv 
aJ =Li 

where the J index stands for each fermion type. 

The expression 1.55 becomes : 

(1.56) 

In addition to the vector and axial vector couplings, it is useful to define 
couplings for left and right handed spinors by : 

giving: 

CR= VJ - aJ = -2Q sin2 Bw 

CL =VJ+ aJ = 2(Li - Q sin2 Bw) 

(1.57) 

(1.58) 

(1.59) 
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1.4.4 The fermion masses 

The fermions (leptons and quarks) are introduced in the theory with a zero 
mass in order to ensure the invariance of the Lagrangian density under the 
SU(2)L symmetry group for chiral isospin transformations. To obtain a non 
vanishing mass for fermions, we have to postulate that they can interact dif­
ferently than only through the weak and the electromagnetic interactions : 
non vanishing masses for the fermions can be generated by the coupling of 
the Higgs field to the fermions. 

Yukawa type interaction terms are introduced into the Lagrangian density. 
they can be symbolically written as : 

.Cip-Ji = ~ 9si'P-lfii'l/Ji (1.60) 
t 

where i stands for all fermion types (leptons or quarks) and g,9 i is a coupling 
constant which has to be adjusted in order to get the corresponding fermion 
mass. 

With the Higgs field as written in equation 1.23, one obtains : 

(1.61) 

The first term is the mass term of the corresponding fermion i which would 
then be equal to (9si17) with 77 still an arbitrary parameter constraint by the 
(still unknown) mass of the Higgs boson. The second terms describe a resid­
ual, Yukawa type interaction between the Higgs field and the fermion fields. 
This interaction has to be added to the electroweak interaction framework. 
This new interaction is characterized by the coupling constant 9si and should 
be sufficiently small so as not to destroy the good agreement (at the present 
level of accuracy) between the V-A theory and experiment. 

From equation 1.61 we deduce the mass of the fermion i : 

mfi = 9si17 (1.62) 

But we have written (see equation 1.27) : 

M - g17 
w- J2 (1.63) 



1.5 Conclusion 22 

where g is the coupling constant associated to the gauge fields. 

Combining 1.62 and 1.63, we can write : 

m1. rn m1. 
9si ~ -' = v2g--' 

rJ Mw 
(1.64) 

and therefore : 

9si « g (1.65) 

Moreover, the fermion-fermion interaction amplitude through the exchange 

of a Higgs boson H at low energy is given by : 

(1.66) 

where: 

(1.67) 

is the Fermi coupling constant. 

Consequently, if the neutral Higgs boson mass (MH) is greater than the 
fermion mass (MH » m},i with MH = J-2µ 2), the coupling terms 1.60 
have a negligible action in the weak interaction theory. They are, anyway, 
theoretically indispensable to generate non vanishing fermion masses. 

1.5 Conclusion 

In this section we have shown the significance of the various parameters that 
the Standard Model of the electroweak interactions contains. These are the 
coupling constants of the SU(2) and U(l) groups g and g' (or, alternatively, 
e and sin2 Bw), the mass of the Higgs boson mH and the constant rJ related 
to the vacuum expectation value of the Higgs field. The fermion masses are 
also parameters. Hence the introduction of a fundamental scalar solves the 
mass generation problem, but only at the expense of introducing arbitrary 
parameters. 
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The agreement between the theory (the Standard Model) expectations and 
the experimental results obtained by the four LEP experiments is very good 
(within 1 % ) . Still the Higgs boson mass remains unknown : the present 
lower limit (at 95 % confidence level) from the combined results of the four 
LEP experiments is 65.2 GeV /c2 [6]. Higgs boson search at LEP200 should 
extend the search range up to 90 GeV/c2 . The future LHC project will be 
designed to find the Standard Model Higgs boson in the whole possible mass 
range up to 1 TeV /c2 [7]. 
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Chapter 2 

The experimental setup 

2.1 The LEP collider 

In their concern to confirm the validity of the present theory of the elec­
troweak and strong interactions, known as the "Standard Model", the physi­
cists decided at the beginning of the eighties to build the Large Electron­
Positron collider, LEP [1]. It was optimised to operate at centre of mass 
energies peaked at the zo mass (91 GeV /c2 ) to study zo decay properties 
(LEP 100). In a second phase starting in 1996, LEP is operated at energies 
up to Js = 200 GeV to study essentially w± physics (LEP 200). 

This biggest particle accelerator ever constructed-the Large Electron Positron 
(LEP) collider- was built on the franco-suisse border near Geneva at CERN. 

The technical installations of LEP accelerator-collider complex are housed 
in a ring-shaped tunnel, 27 kilometres long, 3.8 metres wide and located be­
tween 50 and 70 metres below the surface (figure 2.1). The ring is not a 
perfect circle but consists of eight 2800 metres curved sections or arcs linked 
by eight straight sections. In the arcs, the electrons and positrons are kept 
on a circular orbit by 3392 bending magnets. The beams are focused by 
816 quadrupole and 504 sextupole magnets all positioned along the straight 
sections and the arcs of the ring. Prior to each collision, the electrons and 
the positrons are accelerated as they pass through radiofrequency accelerat­
ing cavities. The collisions of the beams take place at the centre of straight 
sections. 
Before the electrons and positrons enter LEP, full use is made of pre-LEP in­
jectors and accelerators (figure 2.2). This injection system has to feed some 
five million million electrons and positrons into the main LEP ring about 



2.1 The LEP collider 26 

once every twelve minutes. The electrons are obtained via thermionic emis­
sion from a heated filament and subsequent electric field extraction whence 
they are accelerated to 200 MeV in the LEP Injector Linac (LIL). Some of 
these electrons are accelerated up to 600 MeV in the second stage of the LIL, 
after which they enter the Electron Positron Accumulating ring (EPA). 
The rest of the 200 MeV electrons are used to obtain the positrons : they 
are decelerated by a fixed target, producing bremsstrahlung photons which 
then produce pairs of electrons and positrons. The positrons are separated 
out by magnetic field extraction, accelerated to 600 Me V and passed to the 
EPA to join the electrons. 
When sufficient positrons are stored, the electrons and the positrons pass 
separately into the Proton Synchrotron (PS) for further acceleration to 3.5 
Ge V, then into the Super Proton Synchrotron (SPS) to be accelerated to 
22 GeV. Finally, bunches of electrons and positrons are transferred into the 
LEP ring in opposite direction. 

For the first construction phase, four large experimental halls have been 
equipped with detectors. The first four experiments on LEP were selected 
on the basis of their physics potentiality and technical feasibility. 

ALEPH, DELPHI, L3 and OPAL1 are 4 magnetic detectors designed to de­
tect and measure all final state particles produced in e+ e- collisions. Al­
though the aim of the four experiments is an optimal detection of all the 
particles created in the collisions between electrons and positrons, they have 
specific aims and are therefore characterised by particular and complemen­
tary technological features. Their most striking properties are mentioned 
here. 

The idea behind ALEPH was to build a general purpose detector, able to 
cope with all the physics at LEP but with a minimum of components. In 
a way, it is the simplest of the four detectors, using the smallest number 
of detector systems to measure and identify charged and neutral particles, 
with the accent on lepton identification. It has a very powerful Time Projec­
tion Chamber (TPC) in a high magnetic field of 1.0 Tesla (for tracking and 
accurate determination of the momenta of all produced charged particles) 
surrounded by a fine grain electromagnetic calorimeter (for identifying elec­
trons and measuring energy deposition with very good spatial resolution). 

1 ALEPH stands for "Apparatus for LEP physics" 
DELPHI stands for "Detector with Lepton Photon and Hadron Identification'' 
L3 so named because it was the third Letter of intend 
OPAL stands for "Omni Purpose Apparatus for LEP" 
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The momentum resolution in combination with a micro-vertex detector is 
0.12 Pt %2

. 

The analysis presented in this thesis is based on the data recorded by DEL­
PHI (Detector with Lepton, Photon and Hadron Identification). DELPHI is 
described in details in section 2.2. Essentially it is able to measure all the 
physical characteristics of the leptons and photons and to identify the hadrons 
produced in the LEP collisions. It can then study in depth the details of the 
production and the decay of the zo particles that LEP provides in quantity. 
DELPHI major elements include the biggest superconducting coil ever con­
structed. Outside the coil are the hadron calorimeter and muon tracker. The 
particularity of DELPHI comes from its Ring Imaging Cherenkov counters 
(RICH) (see chapter 3) using the Cherenkov effect in a novel way to identify 
hadrons. 

L3 stands out from the other experiments in its physics aims : it is the 
largest of the four LEP detectors and provides accurate tracking and high 
precision in lepton and photon momenta measurement. An energy resolution 

of 1.2%/ j E( GeV/ c) can be achieved. Notable features of the detector are 
the enormous size of magnet (radius = 6.8 m) -its coil (field of 0.5 T) is 
near the perimeter of the detector and encloses all the experiment concen­
tric detection systems- and the muon detectors designed to have optimum 
momentum resolution as well as the use of a calorimeter for electromagnetic 
shower detection and energy measurement. 

OPAL uses detector techniques such as drift chambers for its central detec­
tor (measurement of the position of the charged particles), lead-glass blocks 
for electromagnetic detectors (identification of the electrons and photons and 
measurement of their energy), and streamer tubes (detection of hadron show­
ers). A muon detector which completely surrounds OPAL comprises 10 me­
tres long drift chambers to pick up and locate the penetrating muons pro­
duced in the electron-positron interactions. The coil of the magnet (field of 
0.4 T) is in the annular space between the central detector (drift jet chamber) 
and the lead-glass calorimeter (electromagnetic shower counter) in contradis­
tinction with ALEPH where the TPC and the electromagnetic detector lie 
inside the magnetic field. 

The LEP collider tunnel including the experimental halls has been con-

2Pt is the transverse momentum expressed in Ge V /c. 
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structecl over a period of four years. Installation of the experiments was 
started at the encl of 1987. The first particle beams were circulating in the 
LEP ma.chine in June 1989. In August 1989 a first pilot run for physics was 
performed. 

Figure 2.1: Cross-section of the LEP installation with the Alps in the back­
ground, the Geneva plain in the middle and the LEP underground experi­
mental areas in the foreground. 
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Figure 2.2: The LEP injection system. 

2.1.1 The luminosity 
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Several parameters influence the quality of the physics results obtained with 
the LEP data. One of them is the rate at which particles collide. This rate 
is proportional to the luminosity L, given by : 

(2.1) 

where ne, nP are the numbers of electrons or positrons in a bunch (4.1011 

particles), k is th~ number of bunches in the LEP ring (i.e. k = 4 and then 
8), f is the revolution frequency and CTx and ay the horizontal and vertical 
r.m.s beam spread at the collision point. In order to optimise the luminos­
ity in LEP (nominal value of L ~ 1031 cm-2s-1 ), the values of ax and ay 
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have to be reduced as much as possible. This is achieved by tightly squeez­
ing the bunches of each bunch to small dimensions at the interaction region 
at the centre of the particle detectors. This is the role of superconducting 
quadrupoles positioned at either side of each detector : they focus the beams 
in the interaction point to a size of 300 µm in the x direction and 12 µm in 
the y direction. 
In section 3.2.8 we will see how the luminosity is obtained with a better ap­
proximation than calculating the parameters appearing in equation 2.1, using 
a reference process of which the cross-section is theoretically well defined and 
does not depend on the parameters to be measured. 
The event production rate is then given by : 

N=LO't 

with O' the cross-section of the interaction of interest (here e+ e- -+ zo -+ 
charged particles) and t the data taking time. 
The integrated luminosity Lint defined as : 

is a frequently used variable. The product of Lint and the cross-section (which 
is, at peak, about 40 nb2 for zo production) yields the total number of events 
produced during the time interval t. Figure 2.3 shows the time-evolution of 
Lint delivered by LEP between 1993 and 1996. For 1994, about 1.484.000 zo 
decays were collected by the DELPHI detector. 

2 1 barn= 10-24 cm2 
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2.2 The DELPHI detector 

2.2.1 Introduction 

The most complex of the four LEP detectors is DELPHI [3], a DEtector 
with Lepton, Photon and Hadron Identification. 

DELPHI has the conventional layout of an e+e- detector intercepted with 
more recent detection techniques. It combines a good 3-dimensional track 
localisation (see section 2.2.3) and a reasonable energy resolution with an 
powerful identification of leptons, photons and hadrons. In addition to the 
standard particle identification by dE/dx measurement, DELPHI is equipped 
with ring imaging Cherenkov detectors, its main distinction from the other 
LEP experiments. 

Each of the various sub-detectors were constructed and are currently op­
erated by over 500 physicists. These sub-detectors are accurately aligned 
within three detector elements.The main element is a 5 m radius, 10 m long 
cylinder, termed the barrel. The other two elements are located at each end 
of the barrel, and as such are named endcaps. The separate elements are 
fully mobile to enable easy access to the sub-detectors when LEP is not run­
ning. Altogether, DELPHI covers a solid angle as close as possible to 4 7f 

steradians around the interaction point. 

Figure 2.4 gives a cut-out view of the DELPHI detector showing its 21 sub­
components. 

The cartesian reference system of DELPHI is a right-handed system with 
its origin at the interaction point, the x-axis pointing towards the centre of 
LEP, the y-axis pointing upwards and the z-axis being defined by the di­
rection of the e- beam. Figure 2.5 shows this coordinate system. B and </> 
are respectively the polar and azimuthal angles. The barrel region having a 
revolution symmetry with its axis parallel to the e+ e- beams, the location of 
a point in the barrel is defined in the cylindrical system ( r, r</>, z). The radial 
coordinate r is defined as r = y'x2 + y2 and the coordinate rep is the product 
of the radius r and the angle </J. r</> is thus the distance measured along the 
circular arc of radius r in the (x, y) plane. The choice of this coordinate r<f> 
is aimed to improve the subdetector spatial resolution (depending on r and 
</>). 
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Figure 2.5: The reference system of the DELPHI detector. 
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DELPHI is operated since 1989. The subdetectors present in DELPHI in 
1990 are described in detail in reference [2]. The aim of the following sections 
is to summarise developments since then and to review the performances 
achieved. A more complete description of the DELPHI detector together 
with a full review of its performances can be found in reference [3]. 

2.2.2 The solenoid 

DELPHI operates in a magnetic field of 1.23 Tesla produced by a supercon­
ducting solenoid enabling high resolution momentum determination. The 
purpose of the solenoid is to provide DELPHI with a homogeneous longi­
tudinal magnetic field parallel to the beam axis. As such, the paths of the 
incoming electrons and positrons at e = 0° are unaffected. Charged particle 
final states traversing the field away from this value of e are forced into helical 
motion with radius depending on the particle momentum and the direction 
of curvature depending on its charge. The curvature reconstructed from the 
information of the tracking detectors allows particle momentum and charge 
to be measured. In general, a track with a radius of curvature r, in a mag­
netic field B, has a value of transverse momentum Pt given by: Pt = 0.3 B r, 
with Pt in Ge V / c, B in Tesla and r in metres. 
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The superconducting solenoid is 7.5 m long and has a 5.2 m inner diame­
ter. The 1.23 T field is made uniform in the tracking chambers of the barrel 
(so as not to disturb the electron drift), by two sets of compensation coil. At 
a radius of approximately 4 m, 20 layers of 5 cm thick iron, in the barrel and 
in the endcaps, form the magnet yoke for the containment of the solenoidal 
field. 

2.2.3 The DELPHI tracking detectors 

The utility of the tracking chambers is to reconstruct charged particle tracks 
and to measure their momenta. 
The tracking system of DELPHI is segmented into a relatively large number 
of independent tracking devices. In the barrel region, four tracking detectors 
are installed : the micro Vertex Detector (VD) which provides tracking in­
formation for short lived particles from zo decays, the Inner Detector (ID), 
the Time Projection Chamber (TPC) which provides from four to sixteen 
point measurements of a charged particle trajectory and finally, the Outer 
Detector (OD). 
In the endcaps, at very low angles, Forward Chambers A and B (FCA and 
FCB) are combined to enable tracking in this region. The following sections 
outline these detectors individually, the last one gives an overview of their 
combined tracking ability. 

0 The barrel tracking chambers 

The micro Vertex Detector At LEP energies, short lived particles (with 
a lifetime of the order of 10-13 to 10-12 s) from zo decays such as taus and 
B hadrons, travel small distances ( rvfew mm) before decaying. Such small 
distance decays, occurring within the beam pipe, can only be studied by 
placing a precise tracker as close as possible to the beam pipe. The detector, 
which covers an angular region from 44° to 136° , consists of three concentric 
shells, at radii of 6.3 cm, 9 cm and 11 cm. Each shell is segmented in </> in 
24 modules with rv10% overlap to assist alignment. The closer and outer 
layers provide both r</> and z coordinates. The inner layer gives r</> points 
only. The strip width (which gives the space position of the ionization pulse) 
is 50 µm in the r</> direction whereas in z, the pitch varies between 50 and 
150 µm. The r</> hit coordinate precision is better than 10 µm. The single 
hit precision of the z coordinate reaches a value of 9 µm. 

The Inner Detector The purpose of the Inner Detector is threefold : 

• to give good tracking at small radii for angles in the region 30° to 150° ; 
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• to provide trigger information in r and z with a granularity of about 1° ; 

• to separate charged particles tracks in one jet with an accuracy of 1 mm 
in r</> . 

To fulfil these tasks, a detector consisting of two cylindrical position measur­
ing chambers, was constructed. 
The two concentric cylindrical chambers are : 

- a drift jet chamber surrounded by a set of 5 coaxial multi-wire pro­
portional chambers. The jet chamber (11.6 cm ~ r ~ 23 cm) is a classical 
cylindrical drift chamber covering an angular region in between 17° and 163° 
and segmented in 24 </> modules. Up to 24 r</> positions, precise to 90 µm, 
are measured for a charged particle crossing a segment at uniform </>. 

- the coaxial multi-wire proportional chambers (23 cm~ r ~ 28 cm) cover 
an angular region in e between 30° and 150° . They provide up to 5 points, 
each with a precision az < 1 mm. The short read-out time (t < 2.3 µs) of 
these proportional chambers enables the Inner Detector to be used in the 
first level trigger (see section 2.2.9). 

The Time Projection chamber The TPC data are the starting point for 
track reconstruction in thee angular region from 22° to 158° . In this region 
the TPC provides from four to sixteen point measurements on a charged par­
ticle trajectory. It is used for particle momentum determination and particle 
identification which is based on the measurement of the particle energy loss 
(dE/dx). 
The TPC consists in a cylindrical drift chamber with an inner radius of 35 
cm, an outer radius of 111 cm and is 300 cm long. Compared to the ALEPH 
TPC (radius= 180 cm, length = 460 cm), the DELPHI TPC is small. This 
is because particle identification in DELPHI is complemented by the Ring 
Imaging Cherenkov detectors (RICHes, see chapter 3). The smaller TPC 
leaves space for the RICH detectors whilst still providing tracking informa­
tion of a sufficiently high standard. The sensitive volume of the TPC is 
divided into two identical symmetric halves at z = 0 m, each half being fur­
ther divided into six sectors azimuthally (in </>). These sectors are filled with 
a mixture of argon/methane (80%/20%), at atmospheric pressure. 
Electrons formed by an ionizing particle traversing the sensitive gas volume 
drift under the influence of a uniform electric field, parallel to the z axis, to 
one of the endcaps. There, they are detected by anode wires and cathode 
pads. The total drift length on each side of the central plane is 134 cm. Laser 
tracks are used to monitor the drift velocity continuously during data taking. 
The drift velocity is about 7 cm/ µs at the nominal voltage. The relative pre­
cision of the drift speed measurement is better than 2x10-4 • Points on the 
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ionizing track are spatially reconstructed by measuring their projected image 
in the r<f; plane on the endcap ( r<f; accuracy = 250 µm per point), using the 
cathode pads and anode wires, and by measuring their z coordinate from the 
drift times ( z accuracy = 900 µm per point). 

On top of three-dimensional track reconstruction, the TPC helps in charged 
particle identification by measuring the ionization loss rate ( dE / dx) of charged 
particles over their track length. The sense wires of its proportional chambers 
provide up to 192 ionization measurements per track. 

The Outer Detector The 0 D is designed to enable charged particle 
track position measurements with a good spatial resolution at 2-metre dis­
tance from the interaction point. The lever arm for track reconstruction 
is then increased and the momentum resolution for fast charged particles 
greatly improved. This is of crucial importance for the exploitation of the 
RICHes as it is explained in chapter 3. 
The fast readout time enables it to be used in conjunction with the Inner 
Detector in the first level trigger (see section 2.2.9) to gate the TPC. 
The 0 D also enables easier association of energy depositions in the barrel 
electromagnetic calorimeter with tracks from the TPC. 
The Outer Detector sits between the barrel RICH and the barrel electromag­
netic calorimeter at a radius of 197 cm to 206 cm. In z it is 486 cm long. In 
</> it covers the angular region from 42° to 138° . In B, it is segmented into 
24 identical overlapping modules. Each module consists of 5 layers of drift 
tubes operated in streamer mode with a mixture of argon, isobutane and 
isopropanol. Full azimuthal coverage is offered due to layers being staggered 
and overlapping. Each layer provides r<f; information with an accuracy better 
than 110 µm per track, and in addition, the central three layers provide fast 
z information ( o-(z) = 3.5 cm). 

O The endcap tracking chambers 

These two classical drift chambers (FCA and FCB) are designed to enable 
tracking, pattern recognition and triggering down to low angles. Combined 
they cover e from 33° down to 11 °. 

The Forward Chamber A The FCA is mounted on each end of the 
TPC. It consists of 2 discs perpendicular to the beam axis which cover the 
angular region in B between 11° and 32° and 148° and 169° , respectively. 
Each disc is divided into 2 modules (one at y < 0 and the other at y > 0). 
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The four modules cover the following area : 

155 cm < lzl :S 165 cm 

29 cm < r :::; 103 cm 
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Each module is made of 3 chambers, each with two staggered planes of 64 
drift tubes. Neighbouring chambers are rotated through 120° relative to each 
other in the (x, y) plane to remove ambiguities. 
The measured drift times give six position coordinates which form a track 
element. In normal conditions, where the direction of the particle is not 
known a priori, the reconstructed track elements have precisions of o-( x) = 
290 µm, o-(y) = 240 µm, o-( B) = 8.5 mrad and o-( </>) averaged over B is 24 
mrad. 

The Forward Chamber B The FCB is located between the forward 
RICH and the forward electromagnetic calorimeter, mounted perpendicular 
to the beam axis in the regions : 

267 cm < lzl :S 283 cm 
53 cm < r :::; 195 cm 

It consists of four modules placed at x > 0 and x < 0 and covering the an­
gular region in B between 11° and 36° and 144° and 169° , respectively. Each 
module is made of 12 sense wire planes separated by 1.1 cm and rotated in 
pairs through 120° with respect to the others. 
The precisions achieved on the parameters of the reconstructed track ele­
ments are o-(x,y) = 150 µm, o-(B) = 3.5 mrad and o-(</>) = 4.0 / sinB 
mrad. 

O Combined Tracking 

As it is explained in chapter 3, RICH counters are not stand-alone detectors : 
they rely on the tracking detectors for the track position inside the RICH 
and the momentum measurement. Moreover, asking signals in the tracking 
devices surrounding the RICHes in both the barrel and the endcap regions 
ensures that only well reconstructed tracks crossing the RICHes are used in 
the measurement. 

Tracking in the barrel begins with the TPC track segments for the track 
fit. This is combined with the OD track segment to ensure high momentum 
resolution and the ID information which ensures good point resolution near 
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the interaction region, and aids the association of tracks with hits in the 
Vertex Detector. 
Charged particles produced at small angles see less of the TPC, and it is here 
that FCA and FCB assist in the tracking. Down to 20° however, nine of the 
24 ID jet points and three of the 16 pads from the TPC are still available 
to give decent momentum resolution when combined with the forward cham­
bers. Charged particles below this value have poorer momentum resolution. 
The momentum accuracy of the tracking system is given on figure 2.6 which 
shows the inverse momentum distribution for muon pairs at 45.6 GeV /c for: 
-(a) The barrel region combining the information of VD, ID, TPC and OD. 
-(b) The endcap regions combining the information from VD and FCB, at 
least. 
Overall, the track momentum resolution in the barrel region ( 45° < () < 
135° ), with 45.6 GeV /c muon pairs, is given by : 

a(l/p) = 0.57 x 10-3(GeV/ct1 

For the endcap regions (20° < () < 35° and 145° < () < 160°), this resolution 
is roughly worse by a factor of 2 : 

a(l/p) = 1.31x10-3(GeV/ct1 

At other momenta, the track parameter precisions can be estimated by com­
paring simulated and reconstructed parameters in a sample of generated zo 
hadronic events. Figure 2.7 shows aP/p, a8 and aq, as a function of the polar 
angle () and the momentum p of the track. We can see that, for a given 
momentum, the precision (a) remains constant over the barrel region but 
deteriorates in the forward regions of DELPHI. 

2.2.4 The muon identification chambers 

The muon chambers are designed to identify muons by recording at least 
two spatial points on a track that has crossed most of the iron of the hadron 
calorimeter. This iron acts as a filter which gives a first level of separation 
between muons and hadrons. Most hadrons are stopped by this material, 
whereas all muons of momenta above 2 GeV /c are expected to penetrate the 
MUon Chambers (MUC=MUB+MUF+MUS). They are simple drift cham­
bers positioned in, and on the outside of, the iron yoke. 
Until 1993 the muon detection system was divided into two parts: the Barrel 
MUon chambers (MUB) and the Forward MUon chambers (MUF). It did not 
offer full coverage : the low angle region ( () < 15° ) and the regions 45° < 
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Figure 2.6: Inverse momentum distribution for collinear muons from zo -+ 
µ+µ- decays : (a) tracks containing hits from VD, ID, TPC and OD, (b) 
tracks containing hits from VD and FCB at least. 
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Figure 2.7: Track parameter precisions : (a) momentum precision as a func­
tion of the polar angle(), (b) momentum precision as a function the momen­
tum for barrel tracks, ( c) azimuthal angle precision as a function of (), ( d) 
azimuthal angle precision as a function of the momentum for barrel tracks, 
( e) polar angle precision as a function of (), ( f) polar angle precision as a 
function of the momentum for barrel tracks. 
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() < 53° and 127° < () < 135° were not covered. In order to cover these two 
8° holes in (), it was then decided to install a new set of muon chambers, the 
Surround MUon chambers (MUS, also called SMC). 

The Barrel MU on chambers 

The MUB consist of three layers of 4 m long drift chambers covering an 
angular region in () between 53° and 127° and segmented in </>into 24 modules 
covering 15° each in azimuth. Each sector is made of two detection modules : 
one at z < 0 and one at z > 0. 
The first layer to be crossed by a muon is called the inner layer, which is 104 
cm wide and positioned 90 cm inside the iron yoke. This inner layer is made 
up of three staggered layers (to solve the left-right ambiguity) of drift tubes, 
two layers of which are used as read-out, the third one as a spare. 
The drift tubes, which measure 20.8 cm by 2.6 cm, contain a single anode 
wire and as such have a maximum drift distance of IVlO cm. They are 
operated in proportional mode with a gas mixture of argon (85.5%), carbon 
dioxide (6%) and isobutane (8.5%). The measured drift time gives the re/> 
information. z information is obtained by timing the signal delay on the 
anode. The resolution obtained on extrapolated tracks is IV 2 mm in re/> and 
IV 80 mm in z. 
The next two layers are called the outer and the peripheral ; each is 8.3 cm 
wide and consists of two layers of drift tubes. The outer layer sits on the 
iron yoke, 20 cm away from the inner. The peripheral layer is located 50 cm 
outside the yoke and covers the dead spaces in </> not covered by the inner or 
outer layers. 

The Forward MU on chambers 

Both arms of the MUF consists of two layers of chambers covering the angular 
regions 20° < () < 42° and 138° < () < 160° , one inside the yoke after 85 cm 
of iron, the second 30 cm away behind the forward scintillator (HOF). 
Each layer is divided in four quadrants, each consisting of two orthogonal 
planes of 22 drift tubes that are 4.3 m long with a cross-section of 18.8 
cm by 2 cm and that are operated in limited streamer mode with a gas 
mixture of argon (15%), carbon dioxide (70%) and isobutane (15%). The 
planes are positioned at 90° to each other in the (x, y) plane to resolve the 
left-right ambiguity. Position information is obtained from the drift time 
measurements combined with delay line measurements which are also used 
to resolve left-right ambiguities. 
Muon tracks crossing the chambers planes should produce 4 hits (two sets of 
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( x, y) measurements per layer). 
The resolution averaged over all the layers in one endcap gives Clxy '.::::'. 5 mm. 
The Forward Muon chambers have been built, tested and installed by the 
Belgian groups of the DELPHI collaboration. 

The Surround MUon chambers 

As explained above, the DELPHI muon system consists of barrel and forward 
parts, leaving a gap of 8° around 50° in B. The MUS were proposed to cover 
this intermediate region ( 0.6 :::; I cosB I :=:; 0. 7 4). This recent addition of the 
MUS has improved the hermiticity of the DELPHI muon identification. In 
addition it provides space point measurements with high efficiency and with 
an accuracy of about 1 cm. 

2.2.5 The DELPHI calorimetry 

A calorimeter is a detector that measures the energy deposited by incom­
ing particles. All or most of the incident particle energy is converted into 
"heat", hence the name calorimeter for this kind of detector. Of course, it is 
not the temperature that is measured but rather some characteristic interac­
tions with matter that generate a detectable effect. The interaction process 
between the calorimeter constituents (which are high density materials lead 
or iron) and the particle depends on the energy and the nature of the parti­
cle. Hence particles of different nature leave different trails of energy in the 
calorimeters. Reconstruction of these energy trails and measurement of the 
deposited energy enable particle identification using suitable calibration. 

Electrons, positrons and photons loose their energy through electromagnetic 
(EM) processes. Above "'10 MeV their absorption in the calorimeters is a 
multistep combination of bremsstrahlung and pair production. Their absorp­
tion occurs within a small volume and leads to an EM shower which is used 
in their identification. 
Muons also loose their energy via EM processes. However, their energy loss 
is dominated by ionization and is only ""2 Me V / g cm-2. Their minimum 
ionizing trail in the calorimeters assists in their identification. 
Hadrons traversing the calorimeter interact with one of the constituent nu­
clei. Hadronic shower development begins at this point and is similar to EM 
shower development, but with more complicated particle production mech­
anisms. Hadronic and electromagnetic shower profiles are similar but differ 
immensely in scale. For example, total absorption (at the 95 % level) of 100 
GeV electrons or photons requires ""21 radiation lengths (X0 ). Whereas pi-
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ons with similar energy require rv6 nuclear absorption lengths ( Ao). For a 
lead calorimeter X 0 = 0.56 cm, Ao = 18.5 cm. Thus the pion is stopped 
in rvllO cm and the electrons in rv 12 cm. This fact assists in hadron iden­
tification, in particular in e/n separation. 

An overview of the design and performances of the DELPHI calorimeters 
is now presented. 

The electromagnetic calorimeters 

The purpose of the electromagnetic calorimeters is the detection and the en­
ergy measurement of photons and electrons. Two types of electromagnetic 
calorimeters are installed in DELPHI : the barrel electromagnetic calorime­
ter, which is a High density Projection Chamber (HPC) and the Forward 
ElectroMagnetic Calorimeter (FEMC) which consists of a set of lead glass 
blocks. The EM calorimeter is placed immediately after the outermost track­
ing chambers and covers a (} region down to 10° . The techniques used for 
the barrel EM calorimeter (HPC) and the one located in the endcap regions 
(FEMC) are different. Supplementary photon taggers have been installed to 
cover the 6° holes which remained between the HPC and FEMC at (} = 40° 
and the 90° and </> cracks in the HPC coverage. 
There are also two very forward calorimeters, the STIC and the VSAT mainly 
used for luminosity measurements (see section 2.2.8). 

The High density Projection Chamber The HPC is the barrel elec­
tromagnetic calorimeter. It is one of the first large-scale applications of the 
time projection principle to calorimetry. Its length is of 505 cm, it has an 
inner radius of 208 cm and an outer radius of 260 cm. 
It consists of 144 similar modules built with an accordion-like structure of 
lead wires. These modules are arranged in 6 rings along the beam axis ( z di­
rection) of 24 sectors each in covering the angular region 41.5° < (} < 138.5° . 
Each module is made of 41 layers of lead wires providing about 18 radia­
tion lengths (Xo) and alternated with 8 mm gas gaps, filled with an Ar-CH4 

(80/20 %) mixture. 
For fast triggering purposes, a layer of scintillators is placed into a sample 
gap after 5 radiations lengths. 

Figure 2.8 shows the schematic layout of the HPC : an incoming particle 
interacts electromagnetically with the lead and produces an electromagnetic 
shower. By sampling the shower at very short intervals and measuring the 
deposited charge, the energy can be calculated. 
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Ionization electrons from showers and tracks drift under the influence of the 
longitudinal electric field to the end plane of a module. This is the same 
technique as in the TPC, and again, detection at the end plane is via a pro­
portional chamber and pad readout. The arrival position on the end plates 
gives r</> information and z is determined from the drift time. The relative 
precision on the measured energy can be parametrised as :3 

(J'E 0.32 
E = 0.043 EB VE(%) [E-+ GeV] 

and the angular precisions for high energy photons are ± 1. 7 mrad in </> and 
± 1.0 mrad in e. 

The Forward ElectroMagnetic Calorimeter The principal aims of 
the FEMC are a good energy resolution and fine granularity. 
The FEMC consists of two 5 m diameter disks each made up of 4532 lead 
glass scintillator blocks (20 X 0 deep) covering polar angles 10° < e < 36.5° 
and 143.5° < e < 170° . The inner and outer radii are of 46 cm and 240 
cm respectively. The blocks which have novel phototriode readout, are flat 

3 EB denotes the square root of the sum of the squares 
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topped pyramids in shape which when arranged together point (-3°) towards 
the collision point. There is material present in front of the FEMC. Together 
this represents about 2 X 0 which degrades the energy and the shower position 
resolution of the FEMC. The resolutions are still good however and are as 
follows : 

(0.12) (0.11) (01) 
0.03 EB VE EB E 10 

0.5 cm 

[E -t GeV] 

The Hadron CALorimeter DELPHI is also equipped with a Hadron 
CALorimeter (HCAL) in both the barrel and the endcap regions. The HCAL 
(rin = 320cm, rout = 470 cm) detects neutral and charged particles and 
measures the total hadronic energy of an event. It essentially consists of 20 
sandwich layers of 5 cm iron and 1. 7 cm limited streamer mode detectors 
with a length of 760 cm. The detector consists of 24 modules in r<f; and is 
incorporated in the return yoke of the magnetic field. The energy resolution 
in the barrel region was measured to be : 

0-E 1.12 
E = 0.21 EB VE [E -t GeV] 

The Forward Hadron Calorimeter It has the same function as the 
Barrel HCAL and covers polar angles between 11.2° and 48.5°, and 131.5° 
and 168.8°. It is made of 19 sandwiched layers of iron which are subdivided 
into 12 sectors equipped with detectors. It is located at lzl = 340 cm and 
has a depth of about 150 cm. 

2.2.6 The Ring Imaging CHerenkov detectors 

As it has been mentioned, the DELPHI detector contains many novel sub­
elements. However, it is the Ring Imaging Cherenkov detectors (RICHes) 
that makes DELPHI the most progressive of the four LEP detectors. The 
RICHes are based on the Cherenkov effect which occurs when a charged par­
ticle travels a material (called radiator) of refractive index n, with a velocity 
v greater than the light velocity in the same material : 

c 
v>­

n 

where c/n is the velocity of light in the material. 

The aim is hadron identification over a wide momentum range. This is 
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achieved by measuring the emission angle of the Cherenkov light with re­
spect to the trajectory of the particle (Be) in both liquid and gas radiators ; 
the liquid radiator for particle identification in low momentum range (up 
to 8 Ge V / c), the gas for particle of higher momentum ( 2 Ge V / c < p < 40 
GeV /c). The velocity of the particle which has emitted Cherenkov radiation 
is determined from the measured angle Be by : 

c 
v=--­

n. cos Be 

Comparing v to the measured particle momentum enables its mass and hence 
its nature to be identified (see section 3.2). 

The reader will find here only a short description of the RICHes. Actually, 
the physics analysis of this thesis is essentially based on the data recorded by 
the RICH counters of DELPHI between 1992 and 1994, the understanding 
of their working order and their performances is then a crucial point of our 
study. For this reason, chapter 3 is entirely devoted to the particles identi­
fication using the Cherenkov effect and gives a more detailed description of 
these detectors. 

The Barrel RICH 

The BRICH is shaped as a cylindrical shell (rin=123 cm, r 0 ,,t=l97 cm) of 3.5 
m in length. It covers the polar angle range 40° :::; B :::; 140°. 
It is designed to perform a pion, kaon and proton identification for particle 
momenta from 0.7 GeV /cup to 45 GeV /c (see section 3.2.2). 

The Forward RICH 

The FRICH is used for particle identification in the forward region. In the 
two endcaps, it covers an active area of rv 8 m2 between the polar angles 15° 
:::; B :::; 35° and 145° :::; B :::; 165°. It works along the same principles as the 
BRICH combining liquid and gaseous radiators with a single photon detector 
(see section 3.2.3). 

2.2. 7 The scintillation counters 

Scintillation counters have been used since the beginning of the century, 
making use of the property of certain chemical compounds to emit short 
light pulses after excitation by the passage of charged particles or by photons 
of high energy. In high energy physics experiments, scintillation counters 
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are used for timing (Time-Of-Flight counters : TOF, see below), for fast 
event selection (Trigger counters or groups of counters connected by fast 
logic into hodoscopes : HOF) or for measuring the energy of particles by 
total absorption in sampling calorimeters. 

The Time of Flight detector 

The TOF consists of scintillator counters surrounding the superconducting 
coil. It covers polar angles from 41° to 139° . Each of the 192 scintillators 
is equipped with a photomultiplier at both ends. It is used in the first level 
trigger of DELPHI and for elimination of cosmic events. The z-coordinate is 
measured with a precision of about 20 cm. 

The Forward Hodoscope 

The HOF also consists of scintillator detectors and is installed between the 
endcap yoke and the second layer of the muon chambers. It is subdivided 
into 4 quadrants with 28 counters each. It is used as a muon trigger in the 
forward region. 

2.2.8 The luminosity detectors 

The luminosity defines the rate of producing collisions between beams. One 
needs to know it to determine the number of expected events via any process 
in e+ e- collisions. At e+ e- colliders, the luminosity is measured by counting 
the number of events of a process with a clear experimental signature, with 
high statistics and with a cross-section which can be calculated theoretically 
with high precision. The process chosen is e+e- -+ e+e- elastic (Bhabha) 
scattering (the Feynman diagrams contributing to this process are given in 
figure 4.1) at small angles, which proceeds almost entirely through the ex­
change of a photon in the t-channel. 

The integrated luminosity at each energy point E, Lint = JJ Ldt, is calculated 
as: 

Ns 
Lint= as(E) 

where NB is the number of Bhabha events recorded during the time interval 
tin a B interval at small angles and as(E) is the corresponding cross-section. 
The overall experimental precision of the luminosity measurement for 1994 
data was 0.09% [3]. 



2.2 The DELPHI detector 49 

In DELPHI, before 1994, the absolute luminosity was measured using two 
detectors : the Small Angle Tagger (SAT) and the Very Small Angle Tagger 
( VSAT). In 1994, the SAT was replaced by a new calorimeter : the Small 
angle Tlle Calorimeter (STIC). 

The Small Angle Tagger 

The SAT consists of two arms installed around the beam pipe at about 250 
cm from the interaction point, at positive and negative z values (acceptance 
between 2.5° and 7.7° in 8). Each arm is composed of a tracking device and 
an electromagnetic calorimeter. The tracker provides 2 space points with a 
resolution of about 500 µm in radial direction. The calorimeter is 28 radiation 
lengths deep and has a relative energy resolution of about 4% for 45 GeV /c 
particles. 

The Very Small Angle Tagger 

The VSAT covers the very forward region from 0.29° to 0.40° in e. It is 7.7 m 
away from the interaction point and consists of a 24 radiation lengths deep 
W /Si calorimeter with a relative energy resolution of about 5% for 45 GeV /c 
particles. 

The Small angle Tile Calorimeter 

The STIC replaces the SAT since 1994. It is a sampling lead-scintillator 
calorimeter formed by two cylindrical detectors placed on either side of the 
interaction region at a distance of 2.2 m and covers an angular region be­
tween 1.7° and 10.6° in e (from 0.065 m to 0.4 m in radius). The blue light 
produced in the scintillator is read by wavelength shifting fibres placed per­
pendicularly to the scintillator planes. The total length of the detector is 27 
radiation lengths. 

At 45.6 GeV the energy resolution is given by '?ff= 2.7%. 

2.2.9 The Trigger system 

The purpose of the trigger is to decide whether to accept an event for the 
Data Acquisition System (DAS) and to store it, or to veto it, in which case 
the DAS is made ready for the next event. The trigger system must be able 
to cope with a large luminosity and large background event rates. 
Ideally the trigger would consist of a number of subtriggers that can indepen­
dently pick out a signal from background with a high level redundancy and 
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efficiency. Also, the trigger decision should be made as quickly as possible to 
limit the dead time of the DAS. 

At LEP, with an 8 bunch configuration, about every 11 µsec a Beam Cross 
Over (BCO) occurs which corresponds to a data taking rate of about 90 kHz. 
Long drift times, such as 20 µsec for the TPC, and time taken to process 
subdetector signals for event reconstruction, reduce the maximum data tak­
ing rate to a few Hz. 
In order to reduce the taking of useless data and select zo events a four level 
trigger of increasing selectivity was installed (Tl, T2, T3, T4). 
The first two trigger levels are synchronous with respect to the BCO signal 
(every 11 µsec). The Tl and the T2 trigger decisions are taken 3.5 µsec and 
39 µsec after the BCO respectively. In the case Tl fires, the T2 trigger con­
firms or rejects the Tl trigger by analysing the information of slow detectors. 
T3 and T4 are software filters performed asynchronously with respect to the 
BCO. T3 confirms or rejects T2 decision on the basis of full reconstruction 
of the event. T4 runs after the data acquisition and flags events for physics 
analysis, reduces remaining background events and provides monitoring fa­
cilities in the form of online event viewing. 
The global trigger efficiency for electron and muon pairs is consistent with 1 
at the level of 10-4 fore between 20° and 160°. Due to their high final state 
multiplicity, hadronic events ( e+ e- -t Z -t hadrons) are triggered with an 
efficiency hardly distinguishable from 1 over nearly the full solid angle. 

2.2.10 Data acquisition, Control and Monitoring 

The DELPHI online system performs two basic tasks : 

• Control, acquisition and monitoring of the detector data (Data Acquisition 
System (DAS) [4] and Quality Checking system (QC) [5]) ; 

• Control, acquisition and monitoring of the detector technical parameters 
(Slow Controls system [6]) . 

- The Data Acquisition System reads out digitised data from the detec­
tor, and stores them for subsequent analysis. Before 1995, the disk files 
were then copied locally onto IBM3480 cartridges. Now they are sent over 
the FDDI optical link network to a Central Data Recording facility at the 
CERN computing centre where they are copied onto high capacity tapes (10 
GByte Digital Linear Tapes). From there, the offiine data analysis centre of 
DELPHI performs the final event reconstruction. 
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- The Quality Checking system as such is a complete environment made 
of various software tools. The primary aim is to be able, at any time, to mon­
itor the performance of the whole chain of data taking : i.e. performances 
of the DELPHI detector as well as of the Data Acquisition and Trigger sys­
tem, writings to the database, calibration of the different subdetectors and 
reconstruction of tracks. 

- The Slow Control system is an automated system for monitoring and 
controlling technical aspects of the experiment, and for reporting and act­
ing on changes in the status of the detector or its environment. During 
data taking, significant changes in the parameters which are relevant to the 
subsequent data analysis (such as chamber pressures, temperatures, voltage 
values or the operation status of any subdetector) are recorded on the central 
database [7] by the 'Elementary Process'. This is achieved using a dedicated 
server process, which sends a copy of all updates to the offiine data analysis 
centre where they can be exploited by the analysis program. 
This system allows a single operator to oversee 12 609 detector monitoring 
and control channels. High voltages trips and many similar causes of data 
loss can usually be dealt with rapidly, often automatically. 

2.3 The data analysis chain 

The main components of the DELPHI analysis system are : 

• A Monte Carlo simulation program : To verify the significance of 
the measurements, the different physics processes together with the 
apparatus component response to the different reactions have to be 
modelled by Monte Carlo studies. The DELphi SIMulation program 
(DELSIM) [8] was built to make comparisons between theory expected 
results and quantities measured by the DELPHI detector. This pro­
gram first generates events (according to the Standard Model theory) 
and then performs the tracking of the particles through the whole de­
tector and simulates the response of each crossed subdetector. 

• A data analysis program : The DELphi ANAlysis program (DE­
LANA) [9] is necessary to convert raw data that the DELPHI detector 
produces into standard physics quantities such as vertex position of the 
event, particle momenta, particle type, etc. 
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• An event viewing system : This system gives the possibility to display 
the results of the DELPHI analysis software. It is used to check events 
selected in particular analysis or to understand how the detector works. 

A short description of these programs is given in the following sections. 

2.3.1 The DELPHI Monte Carlo simulation program 

The simulation procedure presents two subsequent phases : 

• Simulation of the kinematics and the dynamics of the physics process like 
e+e- -t Z/1 -t ff(! = lepton, quark), generated by dedicated pro­
grams, so-called, physics event generators. In this first phase, called 
event generation phase, no detector characteristics are used. 

• Tracking of the final particles, which have been created in the physics pro­
cess, through the detector magnetic field. The response of the detector 
subcomponents together with interaction between particles and the de­
tector material and secondary particles production are also simulated. 
This phase is called the detector simulation phase. During this phase, 
the Monte Carlo program extracts information from a database which 
contains the full description of the geometry and material characteris­
tics of the different subdetector together with their inefficiencies. 

The event generation 

Figure 2.9 shows a schematic view of the e+ e- annihilation : electron and 
positron produce a fermion pair (! f) via a real zo or a I particle in the s­
channel. For quark final states, the event generator is based on the JETSET 
7.3 program (10] which uses the Parton Shower (PS) model and the String 
Fragmentation model (11]. The fragmentation (also called hadronization) is 
the production of hadrons from the qq pair. 

The simulation of the entire process can be divided into four steps : 

• In the first step, the zo boson produced by the annihilation of the inci­
dent electron and positron decays subsequently into the primary quark pair 
qq which may radiate real photons ( = final state radiation). Up to this point, 
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Figure 2.9: Schematic view of the generation of hadronic event. 
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the interaction is described by the Standard Model of electroweak interac­
tions (Glashow-Weinberg-Salam model) discussed in chapter 1. The angular 
distribution d;;:a 0 of the resulting quarks can approximately be expressed as: 

da 2 
d "' A + B cos B + C cos B 

cosB 
(2.2) 

where B is the angle between the quark and the electron beam axis in the 
centre-of-mass system. This leads to the forward-backward asymmetry, the 
subject of this thesis and fully defined in chapter 4. 

• In the second step, the primary quarks can radiate gluons which decay 
into secondary qq pairs (collectively called partons). This can be calculated 
by perturbative QCD. It is usually described by the Lund Parton Shower 
(PS) model where partons interact following three basic reactions: g -+ gg, 
g -+ qq and q-+ qg. 

• The third step is called the fragmentation (or hadronization) phase 
in which coloured final state partons are combined into colour neutral final 
state hadrons. This phase can only be described by phenomenological mod­
els. One of these models in the Lund Monte-Carlo is the so-called "String 
Fragmentation" model. This model is based on the idea that the energy 
of a produced quark pair is stored in a colour flux tube (or string), whose 
potential energy increases with the distance between quarks. The potential 
energy can reach a level where the string breaks up : a new quark anti-quark 
pair is produced. This results in two smaller strings which in turn may break 
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up until only on-shell hadrons remain. The fragmentation process is im­
plemented through a function f ( z) which determines the probability that a 
quark radiates a gluon with a fraction z of the original quark momentum. 
In the present analysis, the Lund Monte-Carlo model is used. In this model, 
the fragmentation function for light quarks ( u, d and s) has the form : 

(1 z)a ( m2) 
f(z) ex ~ exp -b zT (2.3) 

f(z) is called the Lund symmetric function. The coefficients a and b are 
the so-called fragmentation parameters and mr is the transverse mass of 
the created parton ( m~ = m2 + p}_). For inclusive spectra good agreement 
between experimental data and Monte Carlo data can be obtained with a = 
0.5, b = 0.9 Gev-2 [10]. 
Light quark fragmentation is rather well described by this function. For 
heavy quarks (b and c), the LEP data showed that their fragmentation is 
better described by the Peterson fragmentation function [12] : 

1 1 tq 2 
f(z) ex ;(1 - ; - (l _ z) t (2.4) 

where Eq is a quark flavour dependent parameter proportional to 1/m~ and 
which is determined experimentally. The production probability of a quark 

2 

pair in the string fragmentation model is proportional to exp(-'ll":;r) where K, 

is the energy per string length, about 0.2 (GeV /c) 2 . This leads to a suppres­
sion of the heavier strange pair production as compared to the other light 
quarks ( u and d) which may be estimated as : 

1 
Tu : Id : Is : le : lb ~ 1 : 1 : 3 : 10-ll : 10-lOO 

This means also that cc and bb pair production essentially never occur during 
a soft hadronization process (but only in the perturbative phase). 
The hadronic event generator used for this analysis (and the most often 
used in the DELPHI experiment) is JETSET PS 7.3 [10]. This generator 
contains a parametrised model which is based on experimental data collected 
at various centre-of-mass energies. The purpose of the parametrisation is to 
reproduce the observed particle multiplicities and angular distributions in 
the generated samples. This parametrised model thus includes several input 
parameters which can be tuned in order to correspond to the centre-of-mass 
energy in question. A table listing these various input parameters, their 
standard values and the ranges in which they can vary can be found in 
Appendix B. 
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• After the fragmentation, we are left with hadrons. These created par­
ticles, if instable, decay into stable particles. Here the Monte Carlo program 
has to rely on measured quantities like masses, branching ratios, decay widths 
and quantum numbers. 

The detector simulation 

At the end of the event generation phase, we are left with particles and 
their four-momenta. These particles are then passed through the detector 
simulation which tracks these particles in the DELPHI magnetic field. This 
is the main feature of DELSIM. 
The accuracy of this tracking is highly dependent on a very detailed and very 
good description of each subcomponent of the detector and the field map. 
This forms the so-called detector description database which is further used 
to simulate the response of the detector, generating the same signals as those 
in a real event. 

2.3.2 The DELPHI data analysis program 

The simulation data are processed with the same reconstruction program 
called DELANA, as the real event data. DELANA is thus the standard pro­
gram of the DELPHI analysis chain. It relies on databases containing all the 
online information on the alignment, calibration, running conditions for each 
subdetector, LEP running conditions, etc. All these elements are needed to 
reconstruct a DELPHI event. 

The program is divided into two pattern recognition stages. In the first 
stage of the processing, the event reconstruction is performed for each sub­
detector working independently. The raw data are decoded and calibrated 
and noise suppressed. The tracking chambers give space points (as the VD) 
and fully reconstructed track segments (as the TPC) and the calorimeters 
produce energy clusters and showers. These track elements provide the input 
to the global track search. 
In the second stage of the processing, each subdetector performs pattern 
recognition but now using the other subcomponent informations. For exam­
ple, a track is reconstructed by putting together the various track elements 
from each detector. In the global fit of the event, all the subdetectors are 
then combined. The complete tracks with their physics parameters, such 
as momentum, charge,... are reconstructed and clues on identification are 
added. 
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Particle identification 

At this stage, a global identification processor tries to identify each particle 
which created tracks and showers. The DELPHI mass identification algo­
rithm uses the information coming from : 

• The TPC makes use of the dE/dx data to distinguish between e, 7r and 
K· 

' 
• The RICHes : Ring reconstruction results to distinguish between 7r (e,µ), 

K, and protons ; 

• The HPC and FEMC shower data to distinguish between /, e and 
hadrons; 

• The H CAL : shower data to distinguish between µ and hadrons ; 

• The MUB, MUF and MUS : results from hits matching tracks to distin­
guish between µ and 7r. 

The identification using the RICHes on which the present study is based is 
discussed in chapter 3. 

DST format 

When the whole DELPHI data analysis chain is at its end, the event infor­
mation is written out in a DST (Data Summary Tape) format which is used 
for the physics analysis. For each event, a linear structure containing the es­
sential physics quantities for a track (momentum components, track length, 
impact parameters, etc) is created. 

The DELphi SIMulation program (DELSIM) produces data with the same 
structure as the online real data and the DELANA program treats the sim­
ulated data in the same way as the real events. 
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Chapter 3 

The Cherenkov effect and its 
applications : The RICH 
detectors of DELPHI 

This chapter is devoted to the understanding and the description of the Ring 
Imaging CHerenkov detectors of the DELPHI experiment as they play an 
important role in our analysis. 
We first explain the Cherenkov effect on which the RICH detectors are based 
as well as some applications of this electromagnetic effect. We then give an 
overview of the technical characteristics of the RICH detectors installed at 
the DELPHI experiment. 
We conclude by evaluating the identification power of the RICH detectors of 
DELPHI. 

3.1 The Cherenkov effect and its applications 

3.1.1 Introduction 

The russian physicist P.A. Cherenkov [1] was the first scientist who studied 
the phenomenon of emission of bluish-white light from transparent substances 
in the neighbourhood of strong radioactive sources. Between 1934 and 1938 
he performed an exhaustive series of experiments leading to the insight that 
the effect was different from fluorescence and other known forms of lumines­
cence. His results were in excellent agreement with a theory proposed in 1937 
by Frank and Tamm [2]. In 1958, the Nobel Prize for physics was awarded 
to Cherenkov, Frank and Tamm for their work on the effect that has been 
named after its discoverer. 
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This section starts with charged particle identification based on the Cherenkov 
effect. Three types of Cherenkov counters are briefly discussed before enter­
ing in the main application, as far as this work is concerned, of Cherenkov 
radiation in the RICH counters of the DELPHI detector at LEP. 

3.1. 2 The Cherenkov effect 

The electromagnetic field produced by a charged particle in its neighbour­
hood polarises locally the molecules of the medium in which the particle 
is moving. The electromagnetic radiation subsequently emitted by depo­
larisation is called the Cherenkov radiation which is basically a shock-wave 
phenomenon. 
The angle of emission ( Bch) of the shock-wave with respect to the trajec­
tory of the particle is straightforwardly obtained using Huygens' principle as 
illustrated in figure 3.1 : 

(a) (b) 

Figure 3.1: Emission principle of Cherenkov effect : (a) Vp < v1 --+no emission 
of light, (b) Vp > v1 --+ Cherenkov light emission. 

• If the velocity of the particle ( vP) is smaller than the velocity of the light ( v1) 
in the same medium, the waves emitted along the trajectory interfere 
destructively : there is no shock-wave formed and thus no emission of 
light. 

• If Vp is greater than v1, they interfere constructively : a shock-wave is 
formed according to Huygens' principle. The charged particles emit 
radiation in a well defined direction with respect to the line of flight of 



3.1 The Cherenkov effect and its applications 60 

the particle : in azimuth isotropically around the track of the particle. 
Therefore, we observe emitted photons in a cone having the trajectory 
of the particle as axis and the position of the particle as vertex. 

The angle between the direction of the particle and the emitted radiation is 
called the Cherenkov angle Be and is given by : 

For a charged particle travelling in a transparent dielectric medium of refrac­
tive index n, the two velocities Vp and VJ can be expressed as : 

c 
VJ= -

n 
where c is the light velocity in the vacuum. The refractive index of the 
medium being thus defined by : n = ..£.., we obtain : 

t•t 

1 1 
cos Be = - = -r====:== 

f3n nJl - ~2 
(3.1) 

with (3 = .!!E. and I= R (Lorentz variable). 
e 1-f32 

The Cherenkov angle depends on two parameters : the refractive index of the 
medium (n) and the particle velocity ((3). Consequently, the measurement of 
the Cherenkov angle in a detector with fixed refractive index n gives infor­
mation about the velocity of the particle which together with a measurement 
of its momentum p allows one to determine its mass m and thus to identify 
it. We have: 

m = ]!_ = pjn2cos2Be - 1 
!31 

This shows that a detector based on the Cherenkov effect is not a stand­
alone detector but depends on the surrounding tracking detectors for the 
measurement of the momentum. The behaviour of Be for a certain radiator 
material as a function of the particle momentum and the particle mass is 
given in figure 3.2. 
From the Cherenkov relation 3.1, we deduce that : 

- for a medium of given refractive index n, there is a threshold velocity : 
f3min = (l/n), below which no radiation is emitted. At this critical 
velocity the direction of radiation coincides with that of the particle. 
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Figure 3.2: Expected Cherenkov angle versus particle momentum fore, µ, 7r, 

K and proton. (a) Liquid radiator, n = 1.283 ; (b) Gas radiator, n = 1.00176 

- for an ultra-relativistic particle, for which /3 rv 1, there is a maximum angle 
of emission, given by Bmax = arcos(l/n). 

The number of photons produced per unit path length ( dL) of a particle and 
per unit energy interval ( dE) of the photons can be written as : 

cf2 N - Qz a . 2 B 
dE dL - lie sm c 

where, Q is the charge of the particle in electron charge units. We note that, 
for fixed /3, Be increases with the refractive index n and so, does the number 
of photons. But the radiated energy is not infinite because of the frequency 
dependence of the refractive index n = n( w). The Cherenkov radiation is 
emitted only in those frequency bands for which n(w) > 1/ /]. 
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The number of detected photons in a given Cherenkov detector is deduced 
from [3] : 

Ndetected = No L sin2 Be 

where N0 is a 'quality parameter' of the counter (fully discussed in section 
3.3), expressed in terms of an integral over the photon energy hw (in eV) of 
the photon detector efficiency function c(hw) : 

N0 = 370 cm-1 ev-1 j c(hw) d(hw) 

The integral is taken over the wave length range in which the photons are 
detected. We shall see later that for the DELPHI RICHes this range goes 
from 160 nm to 220 nm (see figure 3.7), the first limit being set by the trans­
parency cutoff of the quartz walls and the second by the quantum efficiency 
of the TMAE 1. 

3.1.3 Applications of the Cherenkov effect 

(a) 

1 -~ ~ : ':'....0£ 

~ PHO!(M.Uf'IJER 

(b) 

Figure 3.3: Layout of (a) a threshold Cherenkov counter and (b) a differential 
Cherenkov counter. 

The threshold Cherenkov counter 

The first application of the Cherenkov effect for identifying particles does not 
use explicitly the Cherenkov angle information. It detects particles that have 

1TMAE = Tetrakis diMethyl Amino Ethylene, photosensitive agent. 
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a velocity sufficiently high to produce Cherenkov light in its radiator and it 
is only based on the fact that it exists different momentum thresholds for 
different possible masses. As explained in the previous section, the threshold 
velocity f3th depends on the refractive index n of the medium : f3th = l/n . 
Two particles that have the same momentum but different masses m1 and 
m 2 (m2 > m 1) can be discriminated by appropriate selection of the refractive 
index, such that particle m 1 will emit Cherenkov light whereas particle m2 
will not. Identification of more than two kinds of particles is possible by 
placing several threshold counters in series. 
The layout of a threshold counter is shown in figure 3.3(a). The Cherenkov 
light is focused by a mirror onto a single photo-multiplier. 

The differential Cherenkov counter 

In a differential Cherenkov counter the emission angle of Cherenkov radiation 
is explicitly used. Since the Cherenkov light is emitted at a given angle , it 
appears to an observer to come from a circle positioned at infinity. Focusing 
optics can be used to concentrate this light onto a ring image of radius r in 
the focal plane of the system. The radius r is given by r = f. tan Be, where 
f is the focal length of the optics. The basic principle of the differential 
Cherenkov counter is to detect these ring images using diaphragms placed in 
front of photodetectors (see fig. 3.3(b)). 

The ring imaging Cherenkov counter 

The differential Cherenkov counters described in the previous section have 
several drawbacks. Figure 3.4 shows the principle of a Ring Imaging CHerenkov 
(RICH) counter. 

This technique was proposed by J. Seguinot and T. Ypsilantis [4]. The 
Cherenkov radiation emitted by a crossing particle is focused by a spherical 
mirror of radius R surrounding the interaction region at its centre, on a de­
tection surface of radius ~· The radiating medium fills the area between ~ 
and R. For particles originating from the optical centre of the mirror and for 
particles that are slightly off axis, the image is practically a ring. 
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Figure 3.4: Principle of a large phase space acceptance rmg imagmg 
Cherenkov detector. 

3.2 The RICH detectors of DELPHI 

3.2.1 Introduction 

At the time the DELPHI letter of intent was submitted (1982) the technique 
of Ring Imaging Cherenkov (RICH) counters was still in development. It was 
decided to build a prototype to study the feasibility and the performance 
of a big RICH system. The knowledge and experience gained in different 
works [5), combined with results from smaller and more specific setups led 
to the design of the final RICHes of the DELPHI detector. 

The aim of the Cherenkov counters is to provide particle identification by 
the detection of the light emitted in UV transparent media. The Ring Imag­
ing Cherenkov detector system in the DELPHI experiment is designed for 
hadron ( 7r , K, p) identification in the momentum range from 2 Ge V / c to 
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40 Ge V /c. In order to cover most of the solid angle two detector systems 
have been built, the Barrel RICH [6] of cylindrical geometry which covers 
the barrel region and the Forward RICH [7] located in the endcap regions. 
Figure 2.1 shows their exact position inside the DELPHI assembly. Using 
cylindrical coordinates r, </>, z with the z-direction along the beam axis, the 
Barrel RICH covers the polar angles 40° < e < 140°, the Forward RICH, 
15° < e < 35° and 145° < e < 165° . 

Although different in geometry, they employ the same principle as schemat­
ically drawn on figure 3.5 : 

• detection in a single array of photosensitive Time Projection Chambers 
(TPC) of the Cherenkov UV photons produced by the particle in the 
Cherenkov media; 

• measurement of the three coordinates of each UV photon conversion point; 

• reconstruction of the measured emission angle for each detected photon 
with respect to the particle trajectory; 

• from the momentum, test of the mass hypotheses against the observed 
number of photons and the distribution of the Cherenkov angles of the 
individual photons. 

The DELPHI RICH detectors are not stand-alone detectors. For the deter­
mination of the particle momentum and the impact point of the particle, 
they rely on the tracking detectors in the 1.23 T magnetic field. Therefore, 
they are placed between specialised tracking detectors. 
The Barrel RICH is situated between the principal tracking device of DEL­
PHI, the Time Projection Chamber and the Outer Detector. It was fully 
installed and operational by the end of 1991. 
The Forward RICH sits between Chamber A at the end-plate of the Time 
Projection Chamber and Chamber B. It was a staged item, but is now fully 
installed and operational. It has been taking data since 1993 (one quarter 
took already data during 1992 LEP running). 

Throughout the 1994 data taking period, 1.5 million events were recorded 
with a fully operational detector. In the previous years, the Barrel RICH has 
recorded 0.24 million events with both radiators (liquid and gaseous), and 
0. 73 million events with the gas radiator only. 

A detailed description of these two RICH counters of is given in references [6] 
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Figure 3.5: Schematic drawing of the DELPHI RICHes working principle [8]. 
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and [7]. Only the main characteristics will be recalled in the following sec­
tions. 

3.2.2 The Barrel RICH of DELPHI 

The design of the Barrel RICH is shown in figure 3.6. It is a cylindrical 
detector, 3.5 m long, with an inner radius of 123 cm and an outer radius of 
197 cm, divided into two halves by a central support wall, 6.5 cm thick. It 
covers the angular region in () between 41.5° and 138.5° . These two identical 
halves, located at each side of the interaction point, are both segmented az­
imuthally in sections of 15° . Each section contains a liquid radiator ( C6F14), 
a drift tube with a MWPC and 6 mirrors. The rest of the volume is filled 
with gas (C5F12 ). The Cherenkov photons from the liquid radiator and the 
gaseous radiator hit the same drift tube from bottom and top respectively. 
The gas inside the drift tube is a mixture of CH4 and C2H6 with TMAE as 
photosensitive agent. 
The reason for using two types of radiators is to extend the momentum region 
over which particles can be identified. Some important properties of those 
radiators can be found in table 3.1. The liquid radiator is used for particle 
identification in the momentum range from 0.7 to 8 GeV /c. The gaseous 
radiator is used from 2.5 Ge V / c to 25 Ge V /c. 

Radiator refr. index n boiling !J.n/(n-1) Pth( GeV/ c) Pmax(GeV/c) 
material at7 e V, latm. point 6.5 - 7.5eV 1f K p 1f K 

C6F14 1.2834 57°C 3.0% 0.17 0.61 1.17 1.2 4.3 
CsF12 1.00176 28°C 2.9% 2.35 8.32 15.8 7.8 25.0 

Table 3.1: Some important properties of the radiator materials of the BRICH. 
Pth is the threshold momentum for the particles. Pmax is the practical upper 
limit of momentum above which the particles cannot be distinguished from 
each other, taking into account the current definition of a. 

The operation of the Barrel RICH has imposed the following design con­
straints : 

• The drift tube is made entirely of UV transparent quartz plates in order 
to match the spectral quantum efficiency of the TMAE. 

p 

7.8 
47.0 
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Figure 3.6: Longitudinal view of a quarter of the Barrel RICH. 
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• The operating temperature of the detector is 40° since the radiator gas 
condenses at room temperature (28°) and the vapour pressure of TMAE 
allows a sufficiently high concentration in that temperature range only. 

• The drift field - up to lkV /cm - ensures drifting without distortions and is 
obtained applying Very High Voltage (VHV) of up to 80 kV on the mid­
wall. This requires good electrical insulation and demands great care in 
designing the electrostatics to avoid any corona and field deformation. 

• The Barrel RICH is operated at 1030 mbar so that the gas refractive in­
dex is high enough to overlap the identification range of the gaseous 
radiator with the one of the liquid radiator. 

In the following sections the main components of the Barrel RICH are de­
scribed. 

The Vessel 

The Barrel RICH detector is enclosed in the space between two cylinders, the 
inner and the outer cylinders, closed at each end by an endfiange. The cylin­
ders are made of aluminium honeycomb sandwiches. All vessel components 
are equipped with heating facilities in order to maintain the temperature of 
40° . 
The inner cylinder together with several other parts of the Barrel RICH plays 
a role in the formation of the electric field. The mid-wall is connected to the 
drift Very High Voltage which is degraded along the length of the inner cylin­
der in a controlled way down to zero at the endfianges. 
The outer flanges constitute the mechanical reference for the Barrel RICH 
on which are fixed the mirror cages, the drift tubes with the MWPC's and 
the liquid radiator tubes. 

The Liquid Radiator 

The 48 liquid radiator containers (length=150 cm, width=34 cm, internal 
height=lcm) consist of trays made from composite material closed by 4 mm 
thick UV transparent quartz windows. Two containers are glued together 
and form one mechanical unit. The radiating medium is a 1 cm thick layer 
of liquid C6F14 with an index of refraction of n = 1.2834 (at 7 eV and 1 atm). 
The Cherenkov photons produced by tracks with normal incidence onto the 
photon detector are distributed homogeneously around the track in a circular 
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pattern. For tracks incident at an angle they are distributed in a conic-section 
pattern. They are usually called 'rings'. 

The Gas Radiator 

Contrary to the liquid radiator the gas radiator is not 'thin'. The CsF12 gas 
fills the entire space left between all the other elements of the BRICH (,....., 24 
m 3 of C5F12 ). The UV radiation produced along the particle path after the 
drift tube is reflected by parabolic mirrors and focused onto the drift tube. 
The UV photons form together a ring-like image in the focal plane of the 
mirrors which is located just inside the drift tube. 
In order to maintain a good UV-transparency, the radiator gas is continu­
ously circulated through filters in order to remove the main polluting agent : 
H20 and 02. 

The Mirrors 

Every 15° section of the Barrel RICH contains 6 parabolic mirrors (288 in 
total) which are associated with each single drift tube. They are coated with 
50 nm thick layer of Al and 60 nm thick protective layer of M gF2. The 
reflectivity is better than 903 in the relevant wavelength range of 165 - 230 
nm. Cherenkov photons produced in the outer gas volume are reflected by 
these mirrors and focused into ring images in the drift tubes. 

The Mid-Wall Mirror 

The mid-wall mirrors are mounted on the central wall, between the liquid 
radiator boxes and the drift tubes. They reflect liquid radiator photons from 
tracks close to B = 90° back to the drift tube. Without these mirrors the 
photons would be absorbed by the mid-wall. 

The Photon Detector 

The photon detector is an important component of the BRICH. It consists of 
a TPC-like drift volume with a Multi Wire Proportional Chamber (MWPC) 
at the front end. The drift volume is entirely enclosed by UV transparent 
quartz walls in order to admit the Cherenkov light from both radiators. It 
is filled with a mixture of 753 C H4 , 253 C2H6 and TMAE. Inside the drift 
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volume, the Cherenkov photons liberate electrons by ionization of the pho­
tosensitive vapour TMAE. This vapour is added to the drift gas in small 
quantities. Photons with energies higher than 5.5 eV can ionize TMAE. 
The transmission curves of the different elements used in the Barrel RICH 
and the quantum efficiency curve of the TMAE are shown in figure 3.7. The 
cutoff energy of the quartz transmission being about 7.5 eV, the photon 
detection window is about 2.0 e V wide. In order to separate as much as pos-
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Figure 3. 7: Quantum efficiency of TMAE and transmission curves of quartz 
and radiator materials. The curves are for a TMAE temperature of 35°C, 
1 cm quartz, 1 cm C6F14 , 100 cm of C5F12 . The shaded area gives the 
convolution of the TMAE efficiency and the quartz transmission. 

sible the signals from the two radiators in the relatively thin photon detector, 
the TMAE concentration is adjusted such that photons are absorbed with 
a mean free path of about 1.0-1.5 cm. Thus photoelectrons created by the 
liquid radiator are mainly found at the liquid radiator side of the drift tube 
while gas radiator photoelectrons are found mainly at the mirror side. 

The photoelectrons drift in an homogeneous, (anti- )parallel magnetic and 
electric field towards the MWPC at the end of the drift tube where they are 
gas amplified by a factor of about 2.105 . The amplified chamber signals are 
read from anode wires and cathode strips and thus provide the x-y coordinate 
of the photoelectron. This readout of the three coordinates allows a spatial 
reconstruction of the photon conversion point. Using the extrapolated track, 
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the Cherenkov angle can be reconstructed. 

The Barrel RICH contains in total 48 (2 x 24) drift tubes. As shown in 
figure 3.8 two drift tubes are combined with one endfiange and a support 
structure to form a so-called bitube. 

Figure 3.8: Schematic drawing of a bitube. 

The Calibration System 

A calibration system is used to measure the drift velocity of the photoelec­
trons in the drift gas and to observe any distortions of the electric field lines 
mainly due to the presence of space charges. The system is also able to follow 
time dependent changes in the drift velocity due to changes in the tempera­
ture, pressure and gas composition. 
The calibration system consists of a matrix of 5x9 well defined UV light spots 
projected via quartz fibres from a central lamp onto each drift structure. The 
central lamp is triggered only when an exclusive forward trigger is present in 
the whole DELPHI detector (Forward-Bhabha trigger with in particular no 
tracks in the barrel region). This avoids mixing of 'good' photoelectrons and 
those coming from the calibration system. 

The accuracy obtained on the drift velocity is better than 0.07% (Vi = 5.3 
cm/ µs). 
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Figure 3.9: Layout of half an end-cap of the DELPHI Forward RICH : A = 
liquid radiators, E = driftbox, C = MWPC, D = gas radiator volume, E = 
mirrors. 

3.2.3 The Forward RICH of DELPHI 

The design of the Forward RICH is shown in figure 3.9. It is located in the 
two endcaps of the DELPHI detector and covers an active area of"' 8 m2 in 
the polar angle range 15° < e < 35° and 145° < e < 165°. 
As the ERICH, the Forward RICH (FRICH) combine liquid and gaseous ra­
diators with a single photon detector. 
However, the construction of the FRICH is different from that of the ERICH 
because of the geometry and the crossed E - B fields in the photon detec­
tors : the Forward RICH photoelectron drift occurs in a plane perpendicular 
to the 1.23 Tesla magnetic field of DELPHI. 

Each endcap consists of two truncated half-cones and is divided in azimuth 
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into 12 modular sectors. Each such sector contains 1 drift tube, 2 MWPC's, 
3 liquid radiator containers and 5 mirrors (see fig. 3.10). One FRICH detec­
tor is housed in two vessels of 180° in azimuth, each closed by a lid structure 
carrying the liquid radiator containers. 
The FRICH provides a coverage of momenta up to 40 GeV /c. 

Figure 3.10: Cut-view of the Forward RICH : -1- the 3 liquid radiators, -2-
the 5 mirrors and -3- the driftbox. 

The Liquid Radiator 

The liquid radiator plane consists of 36 discrete containers of 1.0 cm depth 
filled with C6F14. 
The containers of a 180° segment are arranged as three concentric annuli of 
6 containers each. A 30° azimuthal section is thus covered by a triplet of 
containers. 
The Cherenkov photons are directly detected by the photon detector. 
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The Gas Radiator 

The C4 F10 ( n=l.00155) radiator gas fills all the available space inside the 
vessel. The number of photons emitted per unit length in the gas radiator is 
smaller than in the liquid and a longer path inside the gas radiator is there­
fore necessary. 
The average track length inside the gas radiator is about 60 cm. 

Spherical mirrors reflect and focus the Cherenkov photons back onto the 
photon detector. 

The Mirrors 

The spherical mirrors cover the polar intervals 12° < B < 35° and 145° < 
B < 168° with full coverage in azimuth, except for two 0.1° slices occupied 
by the side walls of the vessels. They are arranged in three annuli, each with 
equal polar coverage of 7.67°. In the inner annulus, each mirror covers 30° in 
azimuth, in the two outer annuli the coverage per mirror is 15°. This gives a 
total of 120 mirrors for both endcaps. 

All mirrors have the same radius of curvature, 120 cm, with the axis pointing 
towards the intersection point. 

The Photon Detector 

The photon detection plane is subdivided into trapezoidally shaped TPC 
units spanning about 30° in azimuth (fig. 3.11). Each drift volume is electri­
cally divided into two symmetrical halves, each read out by a MWPC. The 
depth of the driftbox is about 5 cm on average. Cherenkov photons arriving 
at the photon detector convert to photoelectrons in the driftgas C2 H6 doped 
with TMAE. Photoelectrons start drifting under the combined action of the 
orthogonal electric drift field (Ed = 1 kV /cm) and the DELPHI magnetic 
field (B = 1.23 T), towards the read-out chambers. The direction of motion 
forms a Lorentz angle with respect to the electric drift field which is about 
50°. 
The photon conversion length ("" 2 cm) and the depth of the drift tube are 
such that a good separation between the photons coming from the liquid ra­
diator and those coming from the gas radiator is possible as they enter into 
the photon detector from different sides. 



3.2 The RICH detectors of DELPHI 76 

(b) 

100 

Figure 3.11: Driftbox covering a 30° sector. 

The Calibration System 

The calibration of the detector is performed by means of UV light from a 
lamp, distributed by quartz fibres which project light at well defined spots 
onto the photon detector. This allows the determination of the drift velocity 
(Vi = 5.1 cm/ µs) and Lorentz angle ( rv 50°) which are parameterised as a 
function of the pressure and temperature of the detector. 

3.2.4 Alignment 

The identification separation capability of the RICH counters depends cru­
cially on the Cherenkov angle resolution and on the number of detected 
photoelectrons. In order to obtain the best accuracy, the positions of the 
different detector elements, the refractive indices of each radiator medium 
and the photon conversion points have to be precisely determined. 
The alignment of the detector elements is based on an offline adjustment of 
component positions and refractive indices. The RICH software package [9] 
called ERA performs the alignment of the different subcomponents such as 
liquid radiator boxes, drift tubes and mirrors following a fit sequence. Se­
lected zo-+ µ+µ-events (45 GeV/c back to back muons) are used to make 
this alignment because of their saturated rings in both liquid and gas ra­
diators , the isolation and cleanness of the tracks. The program minimises 
the difference between the observed ( e-;ieas) and calculated ( g~xp) Cherenkov 
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angles by varying the relative position of each subcomponent : 

N (eexp _ emeas )2 
x2 = """"' c c 

L.. a2 
1 

(3.2) 

with a, the expected error and N the number of photoelectrons used in the 
fit. For each sector of the detector, several parameters are fitted in order to 
minimise x2 for both radiator signals simultaneously. 

Finally, the results of the alignment are used to update the positions of 
the detector elements in the geometry database. 

3.3 Performance of the RICH detectors of 
DELPHI 

The DELPHI RICH counters are very powerful in identifying particles, in 
particular in separating pion (or electron or muon) 2 , kaon and proton over 
a large momentum range. 
The momentum range from 0.7 GeV /c to 45 GeV /c is covered by use of gas 
and liquid radiators (see section 3.2.2). 
As an example, figure 3.12 gives the average Cherenkov angle as a function 
of the particle momentum from real data taken by the Barrel RICH. in 1994. 
The bands corresponding to pions, kaons and protons in the liquid (a) and in 
the gas (b) radiators are clearly visible which demonstrates the identification 
capabilities of the Barrel RICH counter. 

The performance and the resolution of the RICHes have been studied 
and are illustrated by the average Cherenkov angle per saturated ring from 
z0 -t µ+ µ- events from the 1994 running period. These events provide a 
clean and well-known sample of muons having a momentum of 45 Ge V / c, 
a saturated Cherenkov angle (of about 60 mrad in the gas radiator of the 
Barrel RICH) and a maximal number of Cherenkov photons. 

The photoelectron Cherenkov angle distributions for zo -t µ+ µ- events are 
shown on figure 3.13 for both radiators of the Barrel and the Forward RICH. 
Fitting these distributions to a Gaussian function gives the Cherenkov angle 
resolution per photoelectron. Table 3.3 summarises the results [12]. The 

2pions and muons are practically not separable because their masses are too close. 
Electrons can only be separated from pions or muons when the Cherenkov angle of the 
latter is significantly not saturated. 
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Figure 3.12: Average Cherenkov angle versus particle momentum for 1994 
real data for liquid and gas radiators of the Barrel RICH. 

procedure to extract the average Cherenkov angle from the RICH 'raw' sig­
nals will be discussed in chapter 5 which focuses on the identification of the 
kaons. The detailed particle identification algorithms are described in [10]. 

The number of observed photoelectrons ( Nphoton) per track is given by [3] : 

(3.3) 

where Lis the particle path in the radiator medium in cm, Be is the measured 
Cherenkov angle and N0 is the so-called factor of merit of the detector which 
is defined by [11] : 

No= 370 j rJ(E) Q(E) R(E) T(E) dE (cm-1
) (3.4) 
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B. liquid B. gas F. liquid F. gas 
Cherenkov angle, mrad 666 62.3 675 55.0 

Cherenkov angle precision 
per photoelectron, mrad 13.3 4.3 11.4 2.5 

Cherenkov angle precision 
per track, mrad 5.2 1.5 5.0 1.2 

Table 3.2: Cherenkov angles and precisions (in mrad) obtained in dimuon 
events, for the Barrel (B) and the Forward (F) RICH. 

'TJ(E), Q(E), R(E) and T(E) are the electron detection efficiency, the absolute 
quantum efficiency for photon conversion, the reflectivity of the mirror and 
the transmission of the different detector components (radiator gas, quartz 
windows, drift gas, etc ... ) respectively. 
Table 3.3 presents the results of the factor of merit for the DELPHI Barrel 
and Forward RICH detectors when only the the detector element charac­
teristics are considered. The electron detection efficiency was set to 1 and 
the velocity of the charged particle is /3 ~ 1. In practice, factors like dead 

Barrel RICH Forward RICH 
gas liquid gas liquid 

No 81.6 70.0 89.6 70.0 
Nphoton 11.1 27.5 15.6 27.5 
Nmeas 8 14 8 7 

Table 3.3: Factor of merit (N0 ), number of observed photoelectrons per track 
(Nphoton) and measured number of photoelectrons per track (Nmeas) 

space, efficiency of the MWPC, Lorentz angle, reconstruction efficiency of 
Cherenkov photoelectrons, have to be taken into account. All these factors 
lead to a loss in the measured number of photoelectrons per track (Nmea .• ), 
see table 3.3. 
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Figure 3.13: Distributions of the photoelecton Cherenkov angles for dimuon 
events. The average numbers of photoelectrons and the Cherenkov angle 
measurements precisions for single photons are given for both radiator types, 
gas and liquid, in both the Barrel and the Forward RICH. 
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Chapter 4 

In this chapter, we make a presentation of the theoretical formalism used to 
describe the annihilation of electron-positron into a pair of matter fermions, 
with particular emphasis on cross-section and asymmetry for the process 
e+e- --+ ss calculated at tree-level. We show how these experimentally mea­
surable quantities depend on the fundamental parameters of the Standard 
Model. 

4.1 Parameters of the Standard Model 

The Standard Model has three independent parameters (not taking into ac­
count the Higgs boson mass (MHiggs), the fermions masses and the quark 
mixing parameters) which are not predicted by the Model but can be experi­
mentally measured with great precision. A particular useful set of parameters 
is [1 ]: 

• The fine structure constant : 

o: = e2 /47r = 1/137.0359895(61) 

• The Fermi constant : 

Gp = 1.16639(2) x 10-5 Gev-2 

determined from the precise measurement of the muon lifetime. 

• The electroweak mixing angle Bw given by : 

sin2 Bw = 0.2315( 4) 

as determined from the Z mass and other Z-pole observables, the W 
mass, and neutral-current processes. 
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At lowest order (on-shell scheme), the zo and w± masses are predicted in 
the Model as functions of these measured parameters. We have : 

M2 - 7ret: 
w± - ;-;::;0 . 2e 

v2 F sm w 

4. 2 General form of the cross-section 

In chapter 1, we have defined the different basic parameters contained in 
the Standard Model of the electroweak interactions through the Lagrangian 
formalism. We have seen that the interaction between matter fields '!/Ji is 
described by the interaction Lagrangian which adds to the free Lagrangian 
density: 

[, = [,free + [,int 

Corresponding to this, the complete Hamiltonian H of the system is split into 
the free-field Hamiltonian (HJree) and the interaction Hamiltonian (Hint) : 

H = Hfree +Hint 

The Hamiltonian density 1l(x) (H = J1l(x)d3x) can be found from the 
Lagrangian density : 

For the case that Cint does not include any time derivatives, then : 

A short description of the general procedure to obtain the expression of the 
cross-section is developed here (for more details, see [2] and [3]). 

Let us first consider the general case of a scattering process in which two 
fermions, with four-momenta Pi = (Ei,fi), i = 1, 2 collide and produce N 
final state particles with momenta pj = (E't,i' 1), f = 1, ... , N. Initial and 
final particles are assumed to be in definite polarisation states. 
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From the equation of motion1 : 

.d 
'/, dt I 'tf;(t) >= Hint(t) I 't/J(t) > 

with initial condition : I i > at time t0 , replacing I 'tf;(t) > by U(t, t0 ) I i >, 
we get: 

i!!:_U(t, to) = Hint(t)U(t, to) 
dt 

in which U(t, t 0 ) is the evolution operator. 

The solution of this equation can be written as (Neumann-Liouville develop­
ment): 

where T{ ... } is the so-called time-ordered product or T-product. 2 

The probability amplitude for a transition from the initial state I i > (at 
time to= -oo) to the final state If> (at time t = +oo) (Ii> and If> 
being eigenstates of H/ree) is given by the element Sti of the diffusion matrix: 

Sti =< f I s I i > 

with S defined as : 
S = lim U(t, to) 

to-+-oo,t-++oo 

1 Fl·om now, we will work in natural units, hence Ji = c = 1. In such natural units, 
all quantities have the dimensions of a power of the mass. The masses being frequently 
interpreted as an energy and measured in Me V, we have the conservation factors : h = 
6.68 x 10-22 MeV.sec and he= 1.973 x 10-11 MeV.cni 

2The T-product is defined by : 

using the step-function : 

B(t) = {1 if t > 0, 
0 if t < 0. 
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Writing 4.1 in terms of the interaction Hamiltonian density Hint(x), we ob­
tain the so-called Dyson expansion of the S-matrix : 

00 

( -i)n J J 4 4 S = 1 +I: -
1
- ... d X1 ... d XnT{Hint(x1) ... 1-{,int(Xn)} 

n=l n. ( 4.2) 

each integration being over all space-time. 

The Hamiltonian density Hint ( x) involves interacting fields, each linear in 
creation and absorption operators. In the prospect of using expansion 4.2 
to determine the cross-section relative to a given process, calculations are 
greatly simplified by writing each term of the S-matrix expansion as a sum 
of normal products3 (Wick Theorem) and taking into account that in the 
resulting sum, only one normal product corresponds to the desired process : 
the one which contains just the right absorption operators to destroy the 
particles present in I i >, and which contains the right creation operators 
to emit the particles present in I f >. In fact, the expansion 4.2 can be 
used to describe a large number of different processes, each term of order 
n of the expansion corresponding to processes represented by Feynman di­
agrams4 of order n ( n interaction vertices) with creation and absorption of 
particles which are only present in intermediate states and are so-called vir­
tual particles. 

To obtain from the S-matrix expansion 4.2 the transition amplitude S1i =< 
f I S I i >, which contributes to the determination of the cross-section of the 
process under study, is a complex problem. This goes out of the frame of our 
thesis. The reader will find the complete treatment of the problem in [2]. 

Let us show now how to derive from Sti the experimentally observable quan­
tity, i.e. the cross-section. 

For the transition I i >-+I f > where the initial and final states are spec­
ified by the momenta (and spin and polarisation variables) of the particles 

3 in which all annihilation operators appear to the right of the creation operators. 
4 Feynman diagrams are pictorial representations of interactions between quantized 

fields. 
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present, the S-matrix element can be written as : 

( 
1 ) 1/2 

Sfi =ofi + (2n)
4 

o
4 (p/ - Pi) ij 2V Ei 

1 

x IT (2: E') 1/2 Il(2m1)1/2 M1; 
f f I 

( 4.3) 

- Ofi describes the absence of interaction (! = i). 
- o4 (pj - Pi) is the Dirac delta function5 which states for the conservation of 

energy and momentum. 

- m1 stands for the mass of the leptons. 

- M fi is the element of the so-called Feynman amplitude matrix : 

Mfi = L nth_order terms 
n 

the sum going over the successive nth_order Feynman graph (for n ver­
tices). 

- Ei and E1 are energies. 

- V is an arbitrary finite volume in which the whole system is supposed to 
be enclosed. 

The cross-section is, by definition, the transition probability per unit time 
and per unit incident flux. 

This transition probability per unit time is given by : 

r = I S1i 1

2 

T 

And the corresponding elementary cross-section is then : 

dcr = df 
F 

5 defined by the property that for any function G : 

{b o(x - c)G(x)dx = {O if c rf_ [a, b], 
la G(c) ifcE (a,b]. 

( 4.4) 
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where dr is the experimental probability rate and F is the incident flux 
density: 

F = Number of incident particles per unit volume 

x relative velocity of the colliding particles ( 4.5) 
1 

= V X V12 

with V12 =I v1 - v2 J. 

Combining these results we obtain the expression of the elementary cross­
section : 

Let us notice that because of the relativistic invariance of the expression 
d3 I d3pl 

{ av12E1 E2} and of the phase space element { 64 (pj - Pi) if:1 
... E,~" } for any 

four-vector p' = (E',i'), the Feynman amplitude matrix Mti is also a rela­
tivistic invariant. 

In the centre-of-mass system (p1 = -p2), the relative velocity v12 is given 
by the expression : 

- I PI I + I P2 I -1 .... I Ei + E2 
v 12 - Ei E2 - Pl EiE2 

(4.7) 

with E 1 + E2 = y'S, the available energy in the centre-of-mass. 
The final-state momenta are constrained by the conservation of energy and 
momentum. In order to obtain a differential cross-section in the independent 
variables appropriate to a given situation, we integrate equation 4.6 by mak­
ing use of 64 . 

We can illustrate this for the frequently occurring case (our case) of a process 
leading to a two-body final state (N = 2). Equation 4.6 becomes : 

da = f(p~,p;) o4 (p~ + p; - P1 - P2) d3p1 d3p~ (4.8) 

where 

f(p~,p~) = 64 2 ; E E' E' (rr(2m1)) IM 12 
7r V12 1 2 1 2 I 
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For simplicity, we drop the indices f i in I M Ji 1
2

. 

Integration of equation 4.8 with respect to P1 and I P1 I gives the differential 
cross-section in the centre- of-mass system : 

(.!!::!__) = _1 IP} I (rr(2m1)) IM 12 
dn~ 64n2s IP1 I 1 

( 4.9) 

dO being the corresponding element of the solid angle. 

We see that the differential cross-section can always be expressed in terms 
of the Feynman amplitude matrix IM J. In the following section we will see 
how to write I M I for the particular case of the interaction e+ e- -t ss and 
therefore obtain the corresponding cross-section. 

4.3 Cross-section calculation for e+e- -+ ss 

We are now ready to calculate the differential cross-section for the process 
which we are interested in : e+ e- -t ss at LEP energies. In the calculation, 
we will neglect the masses of the initial and final state particles. This is 
allowed when the centre-of-mass energy of the annihilation is much bigger 
than the masses of the particles by one or more order of magnitude. This 
is the case for light quarks u, d and s. Thus we are allowed to use (see 
equation 4.9) : 

da 

dn 
IM 1

2 

64n2s 
(4.10) 

where M is the so-called Feynman amplitude, .JS is the available energy in 
the centre-of-mass and dO is an element of solid angle in the centre-of-mass 
system. 

The process under study in this thesis is : 

(4.11) 

where ri and sj specify the spin of the particle j in initial and final states 
respectively. The Feynman diagram at tree level ( n = 2 in 4.2) corresponding 
to this process is given in figure 4.1. 
The Feynman amplitude for this process can be symbolically written as : 

M =M,+Mz 
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Figure 4.1: The lowest order diagrams for the reaction e+e- -7 ss via/ and 
zo exchange. 

where M-y and Mz correspond to the processes shown in figure 4.1 through 
which the reaction 4.11 can occur at lowest order. The Higgs exchange can be 
neglected because of the small Yukawa coupling to the electron (see section 
1.4.3). 
Thus I M 1

2 is composed of the following terms : 

( 4.12) 

In this process, the spin of the incoming particles ( e+ and e-) and out­
going particles (s-quark and s-quark) are not detected. 
To obtain the corresponding unpolarised cross-section from equation 4.10, 
we must average I M 1

2 over all initial spin states, and we must sum it over 
all final spin states. 

Symbolically, the unpolarised cross-section for the process 4.11 is propor-
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tional to : 

~ I: I: I: I: {IM, 1
2 + I Mz 1

2 +2 Re(M,Mz)} ( 4.13) 
r1 r2 s~ s~ 

And the differential cross-section 4.10 becomes : 

d(J' 1 1 "' 2 2 ( * } dO, = 6411'28 4 ~{IM, I +I Mz I +2 Re M,Mz) 
·'ptns 

The expressions for the invariant amplitudes M, and Mz can be written 
down directly using the Feynman rules [2] with explicit account of the La­
grangian term describing the coupling between matter fields and gauge fields. 
These will be specified in the following sections. 

4.3.1 Invariant Amplitude for the weak interaction 

The rules introduced by Feynman to write automatically the amplitude ma­
trix elements (M Ji) for the interaction diagram 4.1 corresponding to the 
weak neutral current (see table 4.1) are : 

• for each vertex the factor of the neutral weak current interaction can be 
written in the form : 

( 4.14) 

with VJ and aJ the vector and axial vector couplings defined in section 
(1.4.3). 

• the massiveness of the mediators (intermediate vector bosons) of weak 
interactions leads to the following propagator : 

-i(gµv - ~) 

q2 - M 2 + ifM 
( 4.15) 

where r is the resonance width (r = r zo ), i.e. the decay constant of 
the weak boson with mass M (M = Mzo) and q1, the four-momentum 
operator. 
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And the invariant amplitude for the exchange of the zo boson can be conse­
quently written as : 

i e2 1 
Mz = . 2 e 2 e (v1Jl( VJ - aJ15)u) Af2 + TM ( U/Jl( VJ - aJ15)v) 

4 sm tu cos tu s - z i z ( 4 .16) 

The spinors u and v stand for : 

u = ur2 (pz) 

V = Vs 11(P1) 

il = u .• ~ (P1) 

iJ = Vr1 (P1) 

( 4.17) 

( 4.18) 

which specify completely the momenta and spins of the particles in the initial 
and final states. 

Incoming spin ! fermion ( e - ) and Ur2 (pz) and Vr1 (p1) 
Incoming spin ! anti-fermion (e+) 

Outgoing spin ! fermion (s-quark) us~ (p~) and Vs'l (p1) 
and Outgoing spin 1 anti-fermion 2 
(s-quark) 

zo propagator between couplings 
-i(.q 1,v-~) 

q2 -M2 +irM 

Spin ! fermion coupling to the zo -i e 1'1(v -15a ) 2sinBw cosBw J J 

Table 4.1 : Feynman rules for the zo diagram of the process e+e- -7 ss. 

4.3.2 Invariant Amplitude for QED 

Following the Feynman rules given in table 4.2, we can directly give the 
expression of the invariant matrix amplitude for the electromagnetic interac­
tion: 

( 4.19) 
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where Q is the particle charge in units of e ( Q e = -1 and Q .~ = -1 /3). 

Photon ( ')') propagator between cou- -i.Qd"' 
q 

plings 

Spin ~ fermion coupling to the pho- -i e 1'1 Q 
ton (')') 

Table 4.2 : Feynman rules for the photon exchange in the process 
e+e- --+ ss. 

4.3.3 From the Cross-Section to the Asymmetry 

Summing over the final spin states and averaging over the initial spin states 
leads to calculate expression 4.13 in the form of a trace and to replace the 
spinors by appropriate projection operators. The cross-section for the process 
e+ e- --+ ss can now be written down. A long but straightforward calculation 
gives the differential cross-section for the collision of unpolarised incident 
beams as a function of the angle e : 

dCJ 
dD, = C1(s)(l+cos2 0) + C2 (s)cos0 ( 4.20) 

In this equation, e is defined as the angle between the incoming e- and the 
outgoing s-quark directions (centre-of-mass system). 
The functions C1(s) and C2 (s) are given by: 

a
2 

2 M~ (sG) C1(s) = 4s {Qf + VeVJQf s _ M~ ~ 

+ (v;+a;)(v]+a]) ( M1 ) 2 (sG)\ 
8n2 s - M~ a 

( 4.21) 

a2 J2 M2 (saG) C2(s) =-{-aeafQf z 2 4s n s - Mz 

+ (aeve)(a1v1) ( M~ )
2 (sG) 2

} 

n 2 s - M~ a 

( 4.22) 

where f stands for the fermion type in e+e- --+ ff which is as-quark in our 
case, G is the Fermi coupling constant and a the fine structure constant. 
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At relatively low energy (s « M1 and thus ·~<j « 1), the terms in equa­
tion 4.20 arising from Mz can be neglected and the pure electromagnetic 
cross-section dominates : 

This is, of course, symmetric in cos B. 
For intermediate energies, there is a small, but measurable, effect from the 
electromagnetic-weak interference term Re(M-rMi} 
At the zo pole (y's = Mz), the cross-section 4.20 for e+e----+ z0 ---+ ss be­
comes large and contains a term in cos B (see expression 4.23) which displays 
the so-called forward-backward asymmetry : matter and anti-matter do not 
behave in a spatially symmetric way. 

4.4 The forward-backward Asymmetry 

The forward-backward asymmetry Aps in e+e- ---+ff (where f is a fermion: 
the s-quark here) is one of the most important observable quantities since it 
is sensitive to the weak mixing angle ( Bw) which is a prediction of the mini­
mal model after M z is known. 

Aps can be determined by studying the angular dependence of the differen­
tial cross-section for the production of a fermion pair ff(!= lepton, quark), 
which in the Born approximation is given by : 

da 3 
dcosB = atot{S(l +cos2 B) +AFs(s)cosB} ( 4.23) 

The forward-backward asymmetry is defined by [4]: 

A 
_ ap - as 

FB -
ap+as 

( 4.24) 

where aF(B) are the cross-sections in the forward (F) and backward (B) 
regions respectively : 

0-F(B) = { dd~dn 
jF(B) H 

The forward and backward regions being defined by : 

F = {n = (</>,B}) I e E (0°,90°]} 

B = {n = (</>,B}) I e E (90°, 1so0
]} 
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At the zo peak ( s = M~), for light fermions ( m f / M z « 1), the asymmetry 
for the process e+ e- --+ ss at lowest order simplifies to : 

( 4.25) 

with: 

A _ 2vsa., _ 2(1 - 4 I Q., I sin2 Bw) 
s - v; +a; - 1 + (1 - 4 I Q., I sin2 Bw) 2 ( 4.26) 

Ae = As(s--+ e) 

From this expression, we can see that the forward-backward asymmetry is a 
direct measurement of the parity violation in the coupling of the electrons 
and the quarks to the massive zo boson. 
Let us remember that the mixing angle is always to be understood as : 

. zg Mfi, 
sm w = 1- M~ 

It is interesting to notice that the correction to the asymmetry 4.25 in the 
case of massive fermions is, for the case of the b-quark of the order of 0(10-4

), 

and lower for the other fermions [4]. 

Expression 4.26 shows that the forward-backward asymmetry can be ex­
pressed with the unmixed original quantum numbers, the charge and the 
third component of the weak isospin. The asymmetry stays dependent only 
on the quantum numbers, the mixing parameter, the mass and the width of 
the zo boson and the centre-of-mass energy. Figure 4.2 shows the behaviour 
of AFB as a function the weak mixing parameter sin2 010 and the centre-of­
mass energy .JS. The distributions are calculated with Mz = 91.1863±0.0020 
GeV and f z = 2.4946 ± 0.0027 GeV [1]. 

Taking into account higher order contributions, the forward-backward 
asymmetry has to be written as : 

( 4.27) 

where the radiative correction term ~A~~ is generated by the loop diagrams 
contributing to the elastic cross-section and the real photon bremsstrahlung 
emission as an inclusive inelastic process. ~A~~ depends on all parameters 
of the model. 
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Figure 4.2: Distributions of the forward-backward asymmetry of the s-quark 
(a) as a function of the centre-of-mass energy y'S (with sin2 Bw set to 0.2325) 
and (b) as a function of weak mixing parameter sin2 810 (with y'S set to 
Mz = 91.187 GeV). 
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In the improved Born approximation, the higher order radiative corrections 
can be taken into account by substituting in equations 4.26 the effective 
couplings VJ and aJ. In this way, an effective Weinberg mixing angle B!ff is 
defined as: 

. 2 J - 1 ( VJ) 
sm ()eJJ - 4 I QJ I 1 - °'J ( 4.28) 

where Q J is the fermion electric charge. 
Therefore the measurement of the forward-backward asymmetry of fermions 
allows a measurement of sin2 B!J J and an accurate test of the Standard Model. 
From equations 4.25 and 4.28, we can deduce that the down-type quarks are 
themostsensitivetosinB!ff variations (I 6.sinB!ff/6.A~-;ype l'.::::'.1/6). More­

over, the difference A~B - Assps is of the order of 0(10-4
) which is (as we 

will see) beyond the present experimental accuracy. Thus the measurement 
of the ss asymmetry can be considered as a test of the universality of the 
couplings. 
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Chapter 5 

Experimental procedures 
relevant for the analysis 

In this chapter, we start on the description of the experimental techniques 
that we have exploited to measure the forward-backward asymmetry of the 
strange quark. In the first section, we explain how the Brown and Frank 
algorithm is applied in DELPHI to separate light quark events from events 
coming from the decay of b-quarks. In the second section, we discuss the 
identification of the charged particles using the Cherenkov detectors, charged 
particles which are used to tag strange flavour events. 
Let us notice that these procedures were settled by people who are the experts 
in the fields. We have checked with satisfaction the consistency of their results 
and we propose to give here a concise overview of the methods. For more 
details we send the reader to the corresponding references. 

5.1 Selection and rejection of heavy quark 
events 

The main difficulties in the experimental determination of the strange quark 
asymmetry are, like for other quark asymmetries, a reliable identification of 
the jet flavour. A specific difficulty in the case of the s-quark as compared 
to the b-quark comes from the fact that the strange particles which are used 
to tag ss events result also from the hadronization of b-quarks. To separate 
heavy quarks from other flavours, Brown and Frank [1] proposed an algo­
rithm which is based on the following principle : hadrons containing bottom 
quarks have relatively long lifetimes, of the order of 1.55 ps, and large masses, 
implying that their decay is characterised by many (5 or 6) decay products 
with large positive impact parameters with respect to the primary vertex 
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(coming from well separated secondary vertices). 
By using the Vertex Detector (see section 2.2.3) of DELPHI, a precise mea­
surement of the impact parameters of the outgoing tracks of the event with 
respect to the primary vertex (position in space of the primary Z decay) can 
be performed. 
The complete description of the application of the Brown and Frank algo­
rithm in DELPHI can be found in [2]. It gives the possibility of constructing 
one tagging variable from all impact parameter values observed in the event. 

5.1.1 Definitions 

Before treating the problem of the primary vertex reconstruction and the 
impact parameter determination, quantities which will be frequently used in 
the following sections must be dearly defined. 

• The trajectory of a charged particle in a uniform magnetic field is a 
helix with its axis parallel to the direction of the magnetic field (the z axis in 
the DELPHI reference frame given in figure 2.5. To describe this trajectory 
(and thus to reconstruct the track), different sets of parameters can be used. 
The parameters used here are the parameters of the perigee P (the point of 
the track located at the shortest distance from the origin 0 of the reference 
frame.) 
The parameters are : 

- The vector d~ the distance between P and 0. 

- The vector ~ the tangent to the track trajectory in P. ( e is the polar angle 
between Oz and t and </>the azimuthal angle off) 

- The track curvature radius : p. 

Figure 5.1 shows these parameters in the xy plane. 
• The hadronization process of quarks and gluons produced in hard colli­

sions (see figure 2.9) leads to secondary particles clustered in the direction 
of the quark or the gluon. These clusters are called jets. The construction 
of jets in an event is based on a "jet finding algorithm". 
The Brown and Frank algorithm applied in DELPHI uses the jet reconstruc­
tion algorithm called JADE [3], from the name of the collaboration which 
adopted it for the first time. The algorithm is an iterative procedure which 
works as follows : In each hadronic event, the observables 

2E-E· (1- cosB··) i J 1J 
Yii = E2. 

uis 
(5.1) 
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Figure 5.1: Characteristic parameters of the perigee in the plane xy. 
Distributions of the number of photoelectrons for the gas radiator 

are calculated for all pairs of particles i and j where Ei and Ej are the en­
ergies of the particles, eii is the angle between the particles and E?,i.~ is the 
total visible energy of the event (charged particles being assumed to be pi­
ons and neutral particles to be photons). The two particles i and j with 
the smallest value of Yij are replaced by a pseudo-particle or "cluster" with 
four-momentum (Pi+ Pi). This procedure is repeated until the pair masses of 
all particles or pseudo-particle pair-combinations exceed a certain threshold 
value called Ycuti and the resulting clusters are called jets. For LEP applica­
tions, the usual value of Ycut is 0.01. 

• Another frequently used quantity which measures the "jettyness" of an 
event is the so-called thrust quantity which is defined by : 

(5.2) 

Pi being the momentum of the i-th particle. The thrust axis is given by the n 
vector for which the maximum is attained. The allowed range is 1/2 :=:; T:::; 1, 
with 2-jet event corresponding to T ~ 1 and an isotropic event to T ~ 1/2. 
Consequently, the thrust axis gives an estimator of the original direction of 
the primary quark before emission of gluons and is used like that in our 
analysis. 
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5.1.2 Primary vertex reconstruction 

For every hadronic event, the primary vertex is reconstructed using the beam 
spot position as a constraint in a least squares fit procedure. The beam spot 
is defined as the position of the interaction point of the electron and positron 
beams. The beam spot position can vary in time and is averaged for every 
200 hadronic events. For these events, a vertex, origin common to all tracks 
of an event which have at least 2 hits in the Vertex Detector (to ensure a 
good tracking reconstruction), is calculated. 
The principle of the least squares procedure is to find the vertex as close 
as possible to the tracks while being in the interaction region and the x2 

function is [4] : 

(5.3) 

where dj is the distance of the track j to the reconstructed vertex, (jj is the 
corresponding error, Vi is the position of the primary vertex and bi ,(]'f, are 
the beam spot position and size1 . 

The minimisation procedure is carried out iteratively, excluding after each 
iteration the track with the largest x 2 contribution D.x2 = x 2 (Ntrack) -
x 2(Ntrack - 1) if it exceeds a maximum value D.x!,ax· This procedure is 
repeated until no change above threshold occurs. 
Since the beam-spot is used as a starting reference point, all tracks can in 
principle be rejected from the fit. The fraction of such events is around 1 % 
and for these events, the position and dimension of the beam-spot are taken 
as the determination of the primary vertex and the error on it. 
The main advantage of this method of fitting is the quadratic dependence of 
the x2 function (5.3) on the fitted values. It gives the possibility of analytical 
and straightforward determination of the vertex position i/i. Figure 5.2 shows 
the difference between the reconstructed and generated vertex position in a 
simulated DELPHI event sample in the x and z direction for light quark 
events and for bottom quark events. The resolution is about 22 µm in the x 
and z directions for light quark events and 35 µm for bottom quark events. 
The distributions for bottom quark events show non-Gaussian tails due to 
tracks coming from secondary vertices (decay of B hadrons) and not from 
the primary vertex. 

1The width of the beam spot is of 100 to 120 µrn along the x coordinate and 8-
10 µm along y. The typical uncertainties on the x and y positions are of about 9 JLm 

and 4 µm respectively. The precision on the beam spot position determination and its 
small dimensions improve the accuracy of the event by event primary vertex position 
reconstruction. 
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Figure 5.2: Difference (~) between the reconstructed and generated vertex 
position in a simulated event sample (a) x-coordinate for light quarks, ( c) x­
coordinate for b quarks, (b) z-coordinate for light quarks and ( d) z-coordinate 
for b quarks. The full line show the fits to the data with a sum of two 
Gaussians. 
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5.1.3 Impact parameter precision 

In the Brown and Frank algorithm, the quantity effectively used is the so­
called significance of a track. It is defined as the ratio of the track impact 
parameter with respect to the primary vertex ( 8) to the impact parameter 
error (function of Cl rt/> and Cl z). 

The impact parameter of a track is defined as the minimum distance between 
the track trajectory and the reconstructed primary vertex. The sign of this 
impact parameter is defined with respect to the direction of the jet to which 
the track belongs : it is positive if the vector joining the primary vertex to 
the point of closest approach of the track makes an angle less than 90° with 
the direction of the jet (see figure 5.3). 

With such a definition, tracks from the decays of B hadrons have positive 

Charged 
track 

/ , 

/ 
/ 

jet axis 

---Primary Vertex ---

/ , 

/ 
/ 

/ 

Charged 
track 

jet axis 

Figure 5.3: Definition of the sign of the impact parameter 8. 

impact parameters, whereas non-zero impact parameters arising from inac­
curate reconstruction of particle trajectories are equally likely to be positive 
or negative. 
The impact parameter and its error are due to the track extrapolation error 
on the point of closest approach and the error on the primary vertex. The 
measurement contribution to the track extrapolation error at the interaction 
point can be estimated from the apparent distance between the reconstructed 
tracks from Z -+ µ+ µ- decays (assuming their energy to be the energy of 
the beams), where multiple scattering and vertex contributions are negligi­
ble. As it can be deduced from the 28 µm width of the distribution of this 
distance projected onto the ref> plane (see figure 5.4, upper), the track ex­
trapolation measurement error in the plane ref> is Clr<f> = 20 µm. In the rz 
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plane, this error which is a function of the angle 8 (see figure 5.4, lower), is 
O"z = 34 µm for tracks perpendicular to the Vertex Detector. For tracks with 
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Figure 5.4: Upper plot : miss distance between two muons in the ref> plane 
for Z -+ µ+ µ- events. The non-Gaussian tails are due to variations in the 
VD hit precision. Lower plot: miss distance in the rz plane for Z-+ µ+µ­
events, as a function of the polar angle. 

lower momentum, the track extrapolation precision can be estimated from 
the impact parameter distribution of tracks from a sample enriched in light 
quark events (selected by the Brown and Frank algorithm explained in the 
next section). In order to avoid biases coming from a residual contribution of 
heavy quarks, only tracks having a negative impact parameter are used. The 
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extrapolation errors in the r<f> and rz planes have been parametrised as [1] : 

o-;</> = ( ~M3~2e)2 + (o-o,r<1>)2 
p sm 

o-; = ( ~M5~2e)2 + (o-o,z)2 
p sm 

{5.4) 

The first terms describe the contribution of the multiple scattering with mate­
rial, depending on 1 /sine (where e is the track polar angle) and on the track 
momentum p. O"Ms { o-'us) is a multiple scattering coefficient (in µm.Gev / c ). 
The second terms take into account the error due to the intrinsic resolution 
of the tracking system. 
Using the impact parameter with negative sign and parametrising the ex­
trapolation uncertainly as above, the following values are obtained : o-Ms = 
65 µm.GeV /c, o-o,r<f> = 20 µm. The value obtained for the multiple scattering 
coefficient o-'u s is 71 µm. Ge V / c, the measurement error varying from 39 to 
96 µm per track for the angle going from 90° to 45°. 
An important contribution to the improvement on the impact parameter 
resolution in the rz plane is the use of the Vertex Detector in this plane : 
comparing the impact parameter in rz for tracks in the polar angle region 
70° :=:; e :=:; 110° and with momentum above 6 GeV /c, without and with the 
z information of the Vertex Detector, an improvement by a factor 20 {from 
884 µm to 47 µm) in the rz impact parameter precision, is obtained. 

5.1.4 The Brown and Frank algorithm 

This algorithm is used to reject bottom and charm quarks and thus to im­
prove the s-quark purity of our sample. 
As explain above, it is based on reconstructing as precisely as possible the 
primary vertex and the impact parameters of the outgoing tracks with re­
spect to that vertex. 
Figure 5.5 shows the distribution of the absolute value of the significance ( S), 
defined as the ratio of the impact parameter (o) and its error (0-0 ), in the 
r</> and rz planes for tracks from real data measured in the Vertex Detector 
with negative {dashed line) and positive (solid line) impact parameters with 
respect to the primary vertex. 
The excess of tracks in the non-Gaussian tail of the distribution of the pos­

itive significance is due to tracks coming from the decay of B hadrons. The 
negative significance distribution is mainly affected by the detector resolu­
tion effects and not by secondary decays. 
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The discriminant variable used to reject events coming from the decay of 
heavy quarks is the probability Pi computed on an event by event basis for 
all tracks of the event for which the measured significance is positive. 
In a general way, the probability that the N tracks of the event come from 
the primary vertex ( PN) is built using the significance probability density 
J(S). This function J(S) is obtained from the distribution of tracks with 
negative impact parameters in a sample of events with reduced B hadron 
content, mirroring the negative significance S distribution for positive S. PN 
is defined as : 

N-1 N 
PN - II L (-log II)1 /j! , where II - II P(Si) (5.5) 

j=O i=l 

where i runs on the number of tracks considered, the probability that a single 
track with S > S0 (P(S0 )) comes from the primary vertex being defined by: 

P(So) = { f(S) dS 
Js>So 

(5.6) 

This probability Po defined for each track in the event is thus used to build 
the probability PN for a group of N tracks to come from the primary vertex: 
The group of tracks may be all the tracks of the total event (PE), or tracks 
from one hemisphere (defined by the plane perpendicular to the thrust axis) 
or from one or several reconstructed jets. The proof that the variable Pi 
behaves as a probability is given in [1 ]. By construction, the distribution 
of this probability should be flat for events with all tracks coming from the 
primary vertex and would be peaked at 0 for events with if the group of 
N tracks including tracks coming from secondary vertices (decay vertices of 
long-lived particles like bottom and charm hadrons, K.?, A, ... )(see figure 5.6). 
The positive significance event probability distribution (Pi) shows a peak 
at low values due mainly to the heavy quark contribution and is the only 
variable used to separate Z -t bb events from light quark events. 
On figure 5. 7, we show the flavour composition of a sample of hadronic events 
as a function of Pi (the positive significance event probability). We see that 
asking the probability Pi to be greater than some well determined value gives 
an efficient method to reject heavy flavour events. This value will have to 
be chosen as a good compromise between decreasing as much as possible the 
bottom and charm contamination and keeping the s-quark tagging efficiency 
above 80%. 
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5.2 Identification with the RICHes 

Chapter 3 is fully devoted to the description and the technical understanding 
of the working principles of the Ring Imaging Cherenkov detectors (Barrel 
and Forward RICH). In this section we discuss concisely how the informa­
tions given by the RICH detectors are treated and used to identify charged 
particles (and in particular, charged kaons). 
As described in chapter 2, the DELPHI experiment is equipped with an other 
detector to identify charged particles : the TPC based on the principle of 
the energy loss by ionization dE / dx. 
In the momentum range useful for our analysis (p greater than 10 GeV /c), 
this technique is less efficient than the RICH technique and the dE / dx tech­
nique is thus not applied. In fact, the 7r-K separation achieved with the 
DELPHI TPC at the moment is not greater than 1 or 1.5 standard devia­
tions, with an efficiency lower than 20%, which is not sufficient for a good 
kaon identification with high purity essential for the kind of measurement 
done in our analysis (see chapter 6). The major problem is the typical track 
multiplicity of the event topology which makes difficult a correct calibration 
of the distribution of the dE / dx by the simulation for the different tracks and 
consequently a correct determination of the contamination (kaons wrongly 
identified as pious). 

5.2.1 Cherenkov angle reconstruction 

Depending on the particle momentum (p), two identification procedures can 
be distinguished : 

• below the Cherenkov threshold ({3 = 1/n), we speak about VETO iden­
tification. In this case, a particle is identified by the fact that it does 
not radiate Cherenkov light in the medium of refractive index n. 

• above a specific value of p (threshold), Cherenkov radiation is emitted : 
we speak about RING identification. The charged particle is identified 
by the specific reconstruction of the Cherenkov ring. 

This can be easily understood by looking at figure 3.2 (in chapter 3) : a 
charged particle having a momentum of 6 GeV /c and which emits photoelec­
trons in the gas radiator of the Barrel RICH can only be a pion, kaons and 
protons giving no light in this medium below rv9 GeV /c and rvl8 GeV /c, 
respectively. 

Our sample being enriched in ss events by using high momentum (p > 10 
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Figure 5.6: Positive Event Probability (as defined in section 5.1.4) for bottom 
events (top) and strange events (bottom). The arrows show the applied cut. 
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Figure 5.7: Flavour composition of hadronic events as a function of P"i± 
positive significance event probability. 

Ge V / c) charged kaons, only signals coming from the gas radiators of the 
RICI-Ies have been exploited and the RING identification method applied. 

The RING identification method is based on two quantities : the measured 
Cherenkov angle (Be) and the observed number of photoelectrons (N1,.e). Ac­
cording to their definitions : 

1 
cos Be= -. (3n 

l\T N L . 2 0 1'·e = O . SIU c 

(which are fully described in sections 3.1.2 and 3.3, respectively), and know­
ing the particle momentum, they give information on the particle mass. 

Different techniques [5] have been developed to combine the information of 
the detected Cherenkov photons in order to identify particles. 
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The one used for our analysis (conventionally referred to as the "RIB MEAN" 
approach) relies on a weighting and clustering procedure to estimate the num­
ber of photoelectrons and to reconstruct the average Cherenkov angle for a 
given track. It is described in details in [6]. 
The advantage of this method which is based on the reconstruction of the 
average Cherenkov angle is that it allows detailed checks of the RICHes. 
The distributions of the Cherenkov angle and the number of photons for 
identified particles can be studied and compared to expectations and Monte 
Carlo simulations. The average Cherenkov angle (and related quantities) has 
proven to be useful for understanding the RICH response and for adjusting 
the detector simulation. Moreover, this method has proven to give a high 
identification purity which is important for our analysis. 

It should be noted that a very precise and very detailed technical knowl­
edge of the functioning of the Cherenkov detectors is needed to develop such 
a method which provides the basic information (a measured Cherenkov an­
gle, its error and the number of detected photoelectrons) allowing the iden­
tification of the particles from the raw data provided by the experimental 
setup. The details of the full procedure are left to experts and go out of 
the frame our work. In the following we just summarise the different steps 
of the method which delivered the basic data involved in the physics analysis : 

• The starting point of the clustering method is a set of detected single 
photoelectrons i (which come from the conversion of the Cherenkov photons 
produced by the track crossing the radiator medium). They are characterised 
by: 

- a Cherenkov angle Bi, knowing the position of the photoelectron and the 
crossing point of the track inside the photon detector; 

- the error on this Cherenkov angle CY()i, which is the quadratic sum over sev­
eral error sources (like the chromatic aberration, i.e. the variation of 
the refractive index with the photon energy, the position resolution of 
the photon detector, the particle trajectory curvature in the magnetic 
field of DELPHI.); 

• First, a weight ( wi) is given to each photoelectron i according to the 
signal to background ratio. This weight is related to the probability that a 
photoelectron really comes from the conversion of a Cherenkov photon. This 
procedure is applied to suppress background photoelectrons : the background 
in the RICHes is higher for the so-called ambiguous (assigned to more than 
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one ring) photoelectrons than for non-ambiguous ones, and higher for pho­
toelectrons that have a low conversion probability (determined on the basis 
of the conversion point inside the drift tube) than for photoelectrons with 
high conversion probability. Photoelectrons which are isolated have a lower 
background than the non-isolated ones. The main sources of background 
are feedback photoelectrons (created during avalanche developed around the 
anode wires), cross-talk (one signal hits 2 strips), ionization (caused by other 
tracks crossing the photon detector), overlapping rings. The ambiguous pho­
toelectrons are given a typical weight of 0.5 which is brought to 1 after 
ambiguities are solved. Figure 5.8 shows the effect of applying weights on 
the single photoelectron Cherenkov angle distributions : the signal to back­
ground ratio is improved. 

• In the second step, the photoelectrons are grouped to form clusters, 
these clusters being ordered iteratively with respect to the five mass hy­
potheses : electron, muon, pion, kaon and proton, each characterised by an 
expected Cherenkov angle (:}~ypo,exp. For a given hypothesis, the first cluster 
is started from the photoelectron which has a Cherenkov angle closest of the 
expected Cherenkov angle (closest can be more than 2.5 standard deviations 
(a 8~ypo,•xp)) and any photoelectron which is within a window of 2.5 standard 
deviations (aeJ around the average angle (Be) (this one being recalculated 
at each step) is grouped with the first one. If no more photoelectron can be 
added to the first cluster, a second clustering is tried and so on. When all the 
photoelectrons have been grouped, a second set of clusters is built around 
the following hypothesis and so on. 
This gives five sets of clusters corresponding to the five mass hypotheses. 
Among them, the selected set (i.e. the selected hypothesis) is the one which 
has the largest weighted number of photoelectrons ( Nw) in the largest clus­
ter (i.e. which contains the highest number of photoelectrons N), Nw being 
defined as : 

Ntv = L Wi 
i=l,N 

For this chosen set of clusters, the measured average Cherenkov angle : 

(:} meas 1 ~ (:} 
ring = N ~ Wi i 

tu i=l,N 
(5.7) 

the weighted number of photoelectrons Nw and the expected error per pho­
ton: 

(5.8) 
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are calculated for each cluster. 
The cluster with the highest sum of weights is kept and outliers are removed 
by applying a probability cut of 5%. 
We are thus left with a track, its measured average Cherenkov angle, its 
number of photoelectrons and the expected error per photoelectron. It is in 
the next stage that ambiguities are treated. 

• An ambiguous photoelectron is a photoelectron which could have been 
associated to several tracks (see figure 5.9). Different cases are possible (fig­
ure 5.10) : 

(a) The photo electron is associated to only one selected cluster and thus 
the ambiguity is directly resolved. 

(b) The photoelectron is associated to two or more selected clusters. Then 
two situations can be distinguished : 

- the photoelectron is associated to two (or more) rings formed by tracks pro­
ducing Cherenkov light in the same radiator medium (conventionally 
called gas-gas or liquid-liquid ambiguities); 

- the photoelectron is associated to two (or more) rings formed by tracks 
producing Cherenkov light in different radiator media (conventionally 
called gas-liquid ambiguities). 

The latter one is easy to sort out using the conversion depth ("liquid" photo­
electrons are absorbed at one side and "gas" photoelectrons at the opposite 
side of the photon detector). The first one is resolved using the x2 contribu­
tion of the photoelectron to each track. 

• After solving the ambiguous photoelectrons the clustering is redone. 

At the end of the procedure described above, for each track, the informa­
tion available for any physics analysis and which are delivered to us together 
with the data are thus : 

- a measured Cherenkov angle B::i~;s; 

- a number of photoelectrons N; 

- the expected error on this Cherenkov angle O"ring, function of the track 
momentum (p), the observed number of photons (N) and the error per 
photon (ap.e)· This error is parametrised for hadronic events using the 
complete simulation of the apparatus [6] : 

Barrel ( 0.8 ) {T 
a-ring = O"p.e 1 + 

2 
+ p y N for Barrel gas radiator 
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o-F.norgward = O"p e 0.85 (1 + ~) J l + l for Forward gas radiator 
ri · 2 + p N 12 

where o-p.e is given by equation 5.8. 

Of course, we don't take this procedure on trust. Lots of checks have been 
made in order to verify the good treatment of the data and the reliability of 
these informations. Figures 5.11 and 5.12 show the good agreement between 
real data (dots) and simulated data (histograms) for the observed number of 
photoelectrons per ring (or track), the expected error on the Cherenkov angle 
per track or ring ( o-ring), the difference between the measured Cherenkov 
angle and the expected one in the pion hypothesis ( e;:I·~~·' - e;) and the pull 
distribution ((8;.1i~~·' -e;)/o-ring), in the gas radiators of the Barrel RICH and 
the Forward RICH, respectively. 
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5.2.2 Identification algorithms 

Various particle identification algorithms based on these informations have 
been developed [7), depending on the requirements of the different physics 
analyses. Some physics analyses (like the analysis treated in our work) need 
an individual track identification, while others measure statistically the con­
tent of a given sample, without associating a mass to each track. 

• For statistical analyses, one needs a continuous estimator of the ob­
served Cherenkov angle, independent of any mass hypothesis, such that the 
average number of particles of a given type can be determined. This approach 
was used for the first measurement of the s-quark forward-backward asym­
metry [8] by exploiting as continuous estimator not directly the Cherenkov 
angle (Oc) but the corresponding mass squared (m2 ) distribution using the 
relation : 

(5.9) 

where p is the track momentum and n the refractive index of the medium. 
For a given type of particle with a momentum (p), the m 2 distribution re­

sulting from the measurement of Oc is Gaussian. Considering the momentum 
distribution to be exponential and integrating the m2 distribution over the 
selected momentum range, the resulting distribution is in first approximation 
a Breit-Wigner like distribution. A fit to the m2 distribution (see figure 5.13) 
with the sum of two Breit-Wigner curves, one for the saturated Cherenkov 
rings ( e, µ and 7r) and one for kaons, allows one to evaluate the average 
number of particles corresponding to each mass hypothesis. 

• For track-by-track tagging, the observed signal is compared with that 
expected for the various particle types, namely e, µ, 7r, K± and protons, at 
the measured momentum. Depending on the analysis one wants to perform, 
the priority may be either high rejection2 or high identification efficiency. The 
requirements also depend on whether only pion rejection or proton/kaon sep­
aration are required. 
This approach is the most used approach and the one applied in our analysis. 
It exploits the distance between the measured Cherenkov angle ( O;?I~;s) and 
the theoretical expectation of the Cherenkov angle for a given mass hypoth­
esis (O~), in terms of the expected error per ring (o-ring, see section 5.2.1), 
commonly called pull : 

I e~eas - Oh I 
ring c 

Ph = 
O'" ring 

(5.10) 

x' 
2The rejection is defined as the ratio of the : ~ with £ the efficiencies as defined by 

relation 5.13. 
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Let us notice that the expected Cherenkov angle ( e~) is calculated from 
the refractive index. After the fixing of the RICH detectors has been done, 
the refractive index for data and simulation is fixed to one constant value 
( nBarrel gas= 1.0019407 and nForward gas = 1.0015118 for 1994 data). 
A detailed description of this identification algorithm is given in [9). For 
each mass hypothesis, it is optimised with respect to different momentum 
windows corresponding to the various possible combinations of the informa­
tion coming from the liquid and the gas radiators of the RICHes, signal or 
veto information. 
Four different levels of identification (very loose, loose, standard or tight) are 
possible corresponding to the following basic criteria : 

- one verifies whether the measured Cherenkov angle (Ori~.~·') of the track 
one wants to identify is compatible within 2.5 standard deviations (a ring) 

with the given hypothesis h : 

Ph < 2.5 (5.11) 

- one checks the separation with other hypothesis h' : 

Ph' > 0, 1, 2, 3 h' -=f. h (5.12) 

This last selection gives the choice between the four levels of identification 
according to the strictness required in the analysis. So, for example, a given 
track is identified as a 'standard' kaon if its measured Cherenkov angle (B;!i~~s) 
is compatible with the kaon hypothesis ( e~) within 2.5 standard deviations 
(a ring) and if it is further than 2 standard deviations from the 7r hypothesis : 
PK < 2.5 and Ptr > 2. This is illustrated on figure 5.14 for a track (with 
momentum p = 18 Ge V / c) selected in a real event and emitting Cherenkov 
light in both radiators of the Barrel RICH. In the liquid radiator, the recon­
structed Cherenkov angle is saturated but in the gas radiator the kaon mass 
hypothesis is clearly selected. 
In order to show the performances of this identification algorithm, The ef­

ficiency £ and purity P matrices have been computed from simulated data. 
The matrix elements are defined by : 

EX' _ Numb. of simulated X particles tagged as X' 
x - Total numb. of simulated X particles 

P
X'_ Numb. of simulated X particles tagged as X' 
x -

Total numb. of tagged as X' particles 

(5.13) 

(5.14) 



5.3 Comparison data-simulation 117 

where "tagged" means identified by the identification algorithm. 

These matrices are shown on figures 5.15 and 5.16 for the 'standard' identifi­
cation level corresponding to Ph' 2: 2 as function of the particle momentum. 
The criteria that we have applied are given and argued in the next chapter. 

5.3 Comparison data-simulation 

To be sure that the results obtained on simulation are reliable and repro­
duce in a consistent way the real data, extensive checks have been made. 
One of them has been already shown on figures 5.11 and 5.12 which give the 
comparison between real data and simulation for the fundamental quantities 
measured by the RICH detectors. 
Another distribution relevant for the control of the consistency between data 
and simulation is the mass squared distribution (see relation 5.9) for charged 
particles with high momentum. On this distribution reproduced on figure 
5.17 for the barrel RICH and on figure 5.18 for the forward RICH, we see 
the good agreement obtained between real data and simulation in the region 
corresponding to the kaon peak. 
These checks confirm that the signals produce by the charged kaons in the 
RICHes are well understood and correctly reproduced by the simulated data, 
allowing the evaluation of the kaon identification efficiency on the simulation. 
However, we can observe a residual discrepancy between real data and sim­

ulation in the distributions of the mass squared 5.17 and 5.18 under the peak 
corresponding to the saturated Cherenkov angles ( e, µ and 7r). This discrep­
ancy comes from the fact that the background photoelectrons produced in 
the drift tubes of the RICHes are not very well reproduced by the simula­
tion : the simulation under estimate this background which leads to a signal 
cleaner than it is in reality. Consequently, the misidentification efficiency 
(defined as the efficiency for a particle X to be identified as X', X =f X') for 
saturated Cherenkov angles is under estimated and the kaon identification 
purity evaluated on simulation is thus artificially increased. 
This problem is well understood and was taken into account in our study 
(see section 6.5.2). 
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Figure 5.8: Single photoelectron distributions for simulated pions in the liq­
uid (gas) radiator for the barrel (forward) RICH before (dashed line) and 
after (solid line) applying weights. 
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Figure 5.9: Illustration of an ambiguous photoelectron. The dots represent 
the photoelectrons and the circles, the reconstructed rings. 

(a) 

(b) 

Ambiguous 
photoelectron 
resolved 

Figure 5.10: The two situations of ambiguous photoelectron. The dots rep­
resent the photoelectrons, the thick grey circles are the selected rings. (a) 
The photoelectron is associated to only one selected cluster, (b) The photo­
electron is associated to two selected clusters. 
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Figure 5.11: Distribution for charged particles (with momentum between 10 
GeV /c and 24 GeV /c) in the gas radiator of the Barrel RICH for real data 
(dots) and simulation (histograms) for the observed number of photoelectrons 
per ring (or track), the expected error on the Cherenkov angle per ring, the 
difference between the measured Cherenkov angle and the expected one in 
the pion hypothesis and the pull distribution for the pion hypothesis. 
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Figure 5.12: Distribution for charged particles (with momentum between 10 
GeV /c and 24 GeV /c) in the gas radiator of the Forward RICH for real data 
(dots) and simulation (histograms) for the observed number of photoelectrons 
per ring (or track), the expected error on the Cherenkov angle per ring, the 
difference between the measured Cherenkov angle and the expected one in 
the pion hypothesis and the pull distribution for the pion hypothesis. 
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Figure 5.13: Mass squared distribution using the RICH detector for all 
charged particles with momentum between 10 Ge V / c and 18 Ge V /c. 
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Figure 5.14: Upper plots : Reconstructed Cherenkov rings (black rings) 
for a track emitting Cherenkov photons in the gas radiator (left) and the 
liquid radiator (right.) of the barrel RICH compared Lo the expected rings for 
the three mass hypotheses pion (blue), kaon (green) and proton (red) (the 
photoelectrons for which the reconstruction of the ring is the most reliable are 
represented with black dots). Lower plots : these reconstructed Cherenkov 
angles are compared to the expectations. The kaon mass hypothesis is clearly 
selected. 
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Figure 5.15: Identification efficiency matrix for the identification level corre­
sponding to Ph' 2 2, obtained with simulation. 
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Figure 5.16: Identification purity matrix for the identification level corre­
sponding to Ph' 2: 2, obtained with simulation. 
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Figure 5.17: Mass squared distribution for charged particles with 10 < p < 
18 Ge V / c identified by the Barrel RICH. The dots show the real data and 
the line, the simulation. 
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Figure 5.18: Mass squared distribution for charged particles with 10 < p < 
18 GeV /c identified by the Forward RICH. The dots show the real data and 
Lhe line, the simulation. 
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Chapter 6 

Measurement of the 
forward-backward asymmetry 
in e+e--+ zO-+ SS 

As an introduction to this chapter, we remind briefly the different determina­
tions of the ss forward-backward asymmetry to which we have collaborated 
and which are already published. 
Then, we describe in details the method we have elaborated to improve the 
determination of the ss forward-backward asymmetry. It is deduced from 
the angular distribution of the charge kaons of high momentum individually 
identified both in the barrel region (thanks to the Barrel RICH) and in the 
forward region (thanks to the Forward RICH). We discuss the selection cri­
teria applied to obtain a sample as pure as possible of ss events and the 
procedure to compute the ss forward-backward asymmetry from the charged 
kaon asymmetry. Finally we evaluate the systematic errors. 

6.1 Introduction 

The first measurement of the ss forward-backward asymmetry to which we 
have contributed was published by the DELPHI collaboration [l]. This anal­
ysis used the data collected in 1992 (about 0.7x106 ) and extracted the ss 
asymmetry from the distribution of two types of strange hadrons : charged 
kaons (with a momentum between 10 and 18 Ge V / c identified by the Barrel 
RICH) and A0 baryons with (10 :S p :S 23 GeV /c). In each case, the experi­
mental procedure applied to enrich the sample of hadronic events in strange 
quark events relied only on the identification of the corresponding strange 
hadrons which led in both cases to a purity in ss events of about 43% . 
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The following results were obtained for the ss asymmetry at the z0 pole : 

A~8(K±) = 0.128 ± 0.037(stat.) ± 0.013(syst.) 

A~8(A0 ) = 0.164 ± 0.109(stat.) ± 0.057(syst.) 
( 6.1) 

Our preliminary analysis of the data collected during 1994 is presented in [2], 
based on the identification of the charged kaons only, leading to : 

A~s(K±) = 0.111±0.019(stat.) ± 0.020(syst.) (6.2) 

Charged kaons were preferred among other strange hadrons (like A 0 ) pro­
duced in multihadronic decays of the zo because of their relatively high mean 
multiplicity (about seven times greater than the A0 one, see table 6.1). We 
notice that for the first results obtained with charged kaons and A 0 quoted in 
equations 6.1, the statistical error is about three times larger for the method 
using A 0 than the one using K±. Moreover, unlike the present analysis, the 
previous results exploited only the Barrel RICH data. 

Hadrons Multiplicity/ event 
K± 2.39 ± 0.12 
Ko s 2.01±0.04 
A 0.368 ± 0.014 

</>{1020) 0.100 ± 0.008 
K*o 0.742 ± 0.042 
~- 0.0227 ± 0.0018 -"-' 

Table 6.1: Mean experimental multiplicity of hadrons with a strange quark, 
over the whole momentum spectrum [3]. 

The present measurement uses the capability of the DELPHI detector to 
identify individually charged kaons K± both in the barrel and in the forward 
region. It is based on the whole set of data which have been collected during 
1994 (about 1.35x106 multihadronic zo decays), period during which the 
largest statistics with a fully operational RICH detector (Barrel and For­
ward) was recorded. 

Two different analysis have been performed : 

- the first one (which is referred to as the Barrel analysis) is based on 
the identification of fast charged kaons in the Barrel RICH and on the re­
duction of the contamination of bb and cc events using the Brown and Frank 
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algorithm described in chapter 5. The purity in ss events of our sample is 
increased up to 55%. 

- the second one (which is referred to as the Forward analysis) is simply 
based on the identification of fast charged kaons with the Forward RICH. It 
allows to measure the asymmetry in an angular region favoured from a statis­
tical point of view by the cross-section and where the asymmetry is maximum 
and less sensitive to errors in the ss direction estimate. The purity reached 
in strange quarks is of 43%. The Brown and Frank algorithm, which needs 
precisely reconstructed tracks, was not applied in the forward region because 
of the little geometrical overlap of the Forward RICH with the acceptance of 
the Vertex Detector. 

6.2 Data sample 

6.2.1 Hadronic event selection 

For the present analysis, we used only events registered when the DELPHI 
detector was running under optimum conditions (no trips, no power failure, 
no gas leak, etc ... ) 1 . 

The hadronic events (i.e. qij events) were selected using the standard DEL­
PHI collaboration criteria [4] : 

Momenta of charged tracks and event multiplicity are the only quantities 
on which the hadronic event selection criteria are based. To ensure that these 
quantities are reliably measured, only charged tracks satisfying the following 
criteria are used : 

* a momentum p larger than 0.4 GeV /c with a relative error <7(J>) less than 1; 
1' 

* a track length in the TPC longer than 30 cm ; 

* a polar angle B in the range : 

20° ::; B ::; 160° 

* an impact parameter with respect to the average interaction point smaller 
than 4 cm in the r</> plane (transverse to the beam) and smaller than 
10 cm in I z I (along the beam). 

1Commonly called 'run selection'. 
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Restricting the impact parameter to a small volume around the interaction 
region, vetoes cosmic ray events and beam-related backgrounds (collisions 
between the incident e- or e+ and the beam pipe, or stray molecules in the 
beam pipe) occurring outside this volume. 

An event is then selected as hadronic final state if it satisfies : 

* at least 4 charged tracks are present in the event ; 

* the total energy of all charged particles is greater than 15 GeV, evaluated 
from momenta assuming all particles to be pions ; 

* the total energy of the charged tracks in the forward direction ( fJ < go 0
) 

and in the backward direction ( fJ > goo) exceeds 3 Ge V assuming all 
particles to be pions. 

A total of 1.35x106 hadronic events were selected. 
The multiplicity cut removes all muon pairs, Bhabha scattering events and 
the remaining cosmic background. 
The number of rr events and beam-related background is significantly re­
duced, as is the number of II events : hadronic events were generated 
with the JETSET PS 7.3 model [5], as tuned by the DELPHI collabora­
tion [6]. The Lund symmetric fragmentation function described the light 
quark hadronization process, while the Peterson function was used for the 
fragmentation of bottom and charm quarks (see section 2.3.1). The detector 
response was simulated with the DELPHI simulation program DELSIM (see 
section 2.3.1 ). By simulation of a sample of 2.4x106 hadronic events, the 
background due to ,,.+,,.- events has been estimated to be less than 0.2%, 
events due to beam-gas scattering and II interactions have been estimated 
to be less than 0 .1 % . The efficiency for selecting hadronic zo decays was 
estimated to be over g5%. 

6.3 Sample selection 

6.3.1 Rejection of heavy quarks in the barrel region 

After the general selection of hadronic events as given in the previous section, 
heavy flavour rejection is applied by a method based on the Brown and Frank 
algorithm (described in section 5.4.1). This method consists in separating 
events in which a group of particles are believed to be emitted from secondary 
vertices ( B, D decays). It used the positive significance probability Pi that 
the tracks of the event with a positive impact parameter originate from the 
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primary vertex. Since this algorithm relies on the Vertex Detector to compute 
this probability, it is important to obtain a good reconstruction, to limit the 
polar angle of the thrust axis of the events to the barrel region : 

I COS Bthrust I:::; 0. 7 (6.3) 

Moreover this ensures stable performances of the Brown and Frank algorithm 
as a function of the polar angle of the event axis. 
We accept events if : 

p~ > 0.15 (6.4) 

which leads to : 
- a bb contamination :::; 7% 
- a cc contamination :::; 18% 
- an ss selection efficiency 2: 80% 
as evaluated from the full DELPHI simulation (See figure 6.1). 

6.3.2 Charged kaon identification 

Barrel analysis 

After the rejection of the events having tracks which do not originate from 
the primary vertex, essentially bb and cc, we select hadronic events with 
fast charged kaons, as identified by the Barrel RICH. This selection has two 
objectives : 

- to increase the content of our sample of hadronic events in ss events, 
reducing the number of uu and dd events ; 

- to gain information about the charge of the s quarks from the charge of 
the kaon (K- = su and K+ = su). 
Figure 6.2 shows the expected charged kaon momentum spectra separately 
for the 5 flavours using the JETSET PS Model. We see that for high mo­
menta (p > 10 GeV /c), the ss contribution is larger than that of the other 
flavours. 

Only tracks passing with success the following criteria are identified as kaons 
in the barrel region : 

• their polar angle B has to fall in the Barrel RICH angular acceptance : 

0.04 <I cosB I< 0.68 (6.5) 
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Figure 6.1: Flavour composition of a sample of hadronic events as a function 
of the event significance probability P"f.:. The superimposed dots show the 
selection efficiency of strange quark for the minimum value of P"J required. 

because the identification procedure uses the explicit reconstruction of the 
Cherenkov ring produced by the track crossing the Barrel RICH and recon­
structed in the operational region of the photon detectors. 

• they have to be associated to a signal in the Time Projection Chamber 
(TPC) and the Outer Detector (OD), the tn1cking detectors surrounding 
the Barrel RICH. This condition rejects the cases where an hadronic inter­
action occurs before the RICH or with the material of the RICH and ensures 
that only well reconstructed tracks crossing the Barrel RICH are used in the 
measurement. 
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Figure 6.2: Expected charged kaon momentum spectra separately for the 5 
flavours as obtained from the JETSET PS Model. 

• their momentum has to be in the range : 

10 GeV/c:::; p:::; 24 GeV/c (6.6) 

The choice of this momentum window is dictated by the experimental capa­
bility to identify correctly the charged kaons and by the necessity to have a 
good compromise between the efficiency and the purity of the selection of the 
s-quark. The lower limit is constrained by the Cherenkov emission threshold 
(p f'J 8.5 Ge V / c) in the gas radiator of both RICHes and is set to 10 Ge V / c 
to be well above this threshold and thus to ensure good reconstruction of 
Cherenkov rings. The upper limit at 24 GeV /c is imposed to ensure that 
the kaon rings are still well separated from the fully saturated rings due to 
electrons, muons and pions (see figure 6.4). 

• their measured average Cherenkov angle B;:I~~s satisfies [7] : 

I Bri::;s - e~ I < 2.5 aring (6.7) 

(6.8) 
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with a ring the corresponding expected error and e[; ( e;) the expected Cherenkov 
angle in the kaon (pion) hypothesis (see section 5.2.2). 
Figures 6.3 show the resulting kaon identification purity and efficiency as a 
function of the kaon momentum for simulated ss events. We see that the 
kaon purity is almost constant in the whole momentum window used for our 
analysis. On the other hand, we notice the significant loss in efficiency when 
the kaon momentum exceed 24 GeV /c which is due mainly to the fact that 
that kaon band (in the plot of the average Cherenkov angle versus the par­
ticle momentum) gets closer to the saturated band of e, µ and 1r. 

• the higher the momentum of the kaon used to tag the primary s or 
s quark is, the higher the probability that the kaon 'contains' the primary 
s or s quark is. This implies that if more than one charged kaon with the 
characteristics listed above is found, only the highest momentum one is 
considered. 

A total of 43075 events with one identified K± were selected in the bar­
rel region and will be used to deduce the ss asymmetry in this region. 
Table 6.2 makes list of the computed flavour fractions in our sample for the 
barrel region as determined by simulation applying the criteria listed above. 
The purity reached in ss events is of about 55%. 

Flavour Fraction 
d 14% 
u 14% 
s 55% 
c 16% 
b 1% 

Table 6.2: Values for the flavour fractions in the barrel region as computed 
on simulation. 

Forward analysis 

In the forward region, the selection of ss events is based only on the iden­
tification of fast charged kaons by the Forward RICHes. The events defined 
as hadronic events by the selection given in section 6. 2.1 have to fulfil the 
following criteria to be used in the Forward analysis : 
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Figure 6.3: Kaon identification purity (top) and efficiency (bottom) as a 
function of the momentum, in the Barrel RICH (dots) and in the Forward 
RICH (stars). 
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• their thrust axis has to be in the angular region : 

0.80 ~I COS Bthrust I~ 0.95 (6.9) 

The reason of this cut is to ensure that the estimation of the quark direction 
is reasonable. The lowest limit avoids injecting artificially in our sample, 
charged kaons with high transverse momentum with respect to the thrust 
axis (we reject events with the selected kaon in the FRICH acceptance but 
the thrust axis in the barrel region acceptance) which, moreover would give 
a larger contamination in bottom and charm quark events. The upper limit 
rejects events badly reconstructed because of the loss of tracks inside the 
beam pipe and the poor tracking efficiency in the very forward region. 

The track selection listed above to identify fast charged kaons in the Barrel 
RICH stays valid for the Forward analysis excepted that : 

•the tracks have to have their polar angle e in the Forward RICH angular 
acceptance : 

0.82 <I case I< o.94 (6.10) 

because the identification procedure uses the explicit reconstruction of the 
Cherenkov ring produced by the track crossing the Forward RICHes and re­
constructed in the operational region of the photon detectors. 

• only tracks associated to a signal in the TPC and the Forward Cham­
ber B (FCB), the tracking detectors surrounding the Forward RICHes, are 
used (for the same reasons than in the Barrel analysis). 

An additional cut on the polar angle of the track of 0.87 <I cos e I< 0.94 
was applied for rings reconstructed in the odd-numbered drift chambers. For 
these chambers, the full Cherenkov ring could not be reconstructed for the 
tracks with their polar angle in the range 0.82 <I cos e I< o.87, due to the 
fact that the photoelectrons drift under a Lorentz angle2 . This zone was re­
moved because it was found that the acceptance was different for positively 
and negatively charged pions. For even chambers, no dead zone is present. 
This is illustrated on figure 6.5 which shows the distribution of the Cherenkov 
photons in the drift box of the Forward RICH. The effect of the Lorentz angle 

2In the photon detector, the photoelectrons drift in a direction which forms an angle 
of about 50° (called the Lorentz angle) with respect to the electric field. 
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is clearly visible. About 20% of the particles were lost with this cut. 

A total of 9396 events with one charged kaon identified by the Forward 
RICH were selected and used to compute the ss asymmetry in the forward 
region. The resulting purity in ss events is of 43% and the flavour fractions 
in our sample are given in table 6.3. 

Flavour Fraction 
d 10% 
u 10% 
s 43% 
c 23% 
b 14% 

Table 6.3: Computed values for the flavour fractions in the forward region. 

6.4 The asymmetry measurement method 

To facilitate the understanding, we give first the broad lines of the procedure 
we have followed to determine the ss asymmetry. Each step of the procedure 
will then be developed in the next sections. 

For the reaction e+ e- --+ zo --+ ss, the distribution of the s-quark angle 
(} relative to the electron direction (see figure 6.6) is expressed as : 

dCJ 8 As fJ 2 g --(} ex 1 + - F B COS + COS 
cos 3 

(6.11) 

The term proportional to cos(} expresses the forward-backward asymmetry 
A:Fs which is fully defined in section 4.4. 
In order to measure the asymmetry A:F3 , we have to determine : 

- the line of flight of the primary ss pair with respect to the axis of 
incidence of e+e-. The best estimator of this direction is given by the thrust 
axis common to the two jets (sands) (as defined in section 5.1.1) ; 

- the angle of emission of the quark s relative to the incident e- beam. 
This angle is determined considering the charge of the identified kaon : the 
quark polar angle(} is estimated by the thrust axis polar angle (}thr, orienting 
the axis parallel (anti-parallel) to the K- (K+) projection along the axis 
itself (a negatively (positively) charged kaon K- ( K+) is regarded as the 
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Figure 6.4: Reconstructed average Cherenkov angle in the gas radiator of 
the Barrel RICH (left) and the Forward RICH (right) as a function of the 
particle momentum (10 GeV /c < p < 24 GeV /c). 

signature of a quarks (an anti-quarks), (see figure 6.6)). 
In principle, the ss asymmetry A'Fn could be obtained by counting the 

number of events with an s-quark emitted in the forward hemisphere (cos e > 
0 or z > 0) and the number of those with ans-quark emitted in the backward 
hemisphere (cos e < O or z < 0). Since the s and the s quarks are expected 
to enter into a strange meson or baryon with relatively high momentum 
during the fragmentation process, the direction of emission of the quark can 
be estimated by the direction of emission of the corresponding lmon and the 
s-quark forward-backward asymmetry will be deduced from the asymmetry 
of the high energy charged kaons A~ B (we will see how later). In order to 
avoid correcting the asymmetry for the identification efficiency of the kaon 
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which is a function of the polar angle and to obtain a better sensibility of 
the measurement, we have exploited the theoretical expression which gives 
the forward-backward asymmetry as a function of the polar angle e of the s 
quark produced : 

(6.12) 

By measuring the charged kaon asymmetry in angular intervals of e and by 
making a fit of ( 6.12) to this angular distribution, the charged kaon forward­
backward asymmetry A~8 can be determined. The details of this determina­
tion of A~8 of the charged kaon asymmetry are given in the following section. 
We have seen that our samples of events with one kaon are not 100% pure in 
ss events but are made of a mixing of the different quark flavours. For this 
reason, the ss asymmetry is extracted from the asymmetry A~8 (computed 
as explained in section 6.5) by inverting equation 6.13 which gives A~8 as 
a linear combination of the different quark forward-backward asymmetries 
Aq : 

A~8 = l:aq (2cq-1) Aq (q = d,u,s,c,b) 
q 

(6.13) 

where aq is the fraction of selected events with flavour q as primary quark 
and Cq is the probability that the charge of the kaon tags correctly the event 
hemisphere, as defined by the thrust axis, in which the primary quark is 
present. The term ( 2cq - 1) is explained on figure 6. 7. 

In the next section, we discuss the measurement of A~ B while the details 
of the determination of As (from A~8 ) are given in section 6.6. 

6.5 Charged kaon asymmetry 

6.5.1 Experimental procedure 

The measurement of the charged kaon asymmetry could be performed using 
kaons of the same charge in opposite angular regions with respect to the 
e- beam (cos e > 0 and cos e < 0). In order to avoid the evaluation of 
the relative identification efficiency of the kaons in both hemispheres, the 
charged kaon asymmetry AK ( 8) is evaluated using the number of events 
with negatively (N'i() and positively (N"f<.) charged kaon in the same angular 
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region : 

for z < 0 : 

AK(B) = Nj((cosB < 0) - Ni{(cosB < 0) 
Nj((cosB < 0) + Ni{(cosB < 0) 

for z > 0 : 

AK(B) = Ni{(cosB > 0) - Nj((cosB > 0) 
Ni{(cosB > 0) + Nj((cosB > 0) 
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(6.14) 

All efficiency factors, coming from geometry, detector malfunctioning, parti­
cle identification, cancel in the ratios. The obtained results for A~8 using the 
data, either for z < 0 or z > 0, will be seen (see section 6.5.4), as expected, 
to be compatible with each other. 
Because of the fact that the kaon asymmetries 6.14 have to be corrected for 
two effects (see sections 6.5.2 and 6.5.3) : 

• the contamination of our selected sample of events with a high momentum 
K± by events in which a pion has been wrongly identified as a kaon. 

• the spurious asymmetry induced by the detector material in front of the 
RICH detectors. K+ and K- have different hadronic cross-sections 
and thus are absorbed differently by the material in front of the RICH 
detectors. 

which depend on the polar angle of the kaons BK, they are computed in bins 
i of the polar angle of the K± (Af =AK(< BK >i)· The bins in BK were 
chosen such that the corrections applied vary only slightly ( < 5%) inside the 
interval i, and therefore an average value for each correction can be safely 
used for all the events with their kaon present in the given interval. To avoid 
evaluating the relative efficiencies of the mirrors of the RICH detectors, the 
angular intervals i were chosen in order to correspond to the angular coverage 
of each mirror. Considering globally both hemispheres (z > 0 and z < 0), we 
have 2 x 6 = 12 mirrors for the Barrel RICH and 2 x 2 = 4 mirrors for the 
Forward RICH, see table 6.4. To evaluate correctly the contribution to the 
asymmetry of each event j with a kaon present in the bin i and for which the 
thrust axis makes a polar angle Bj, the observed asymmetry in each interval 
i of cos BK, corrected for the contamination and material interaction effects, 
Aibs, will be expressed as : 

Aobs _ w·AK 
i - t FB (6.15) 
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I coseK I 
BRICH 0.68 - 0.61 

0.61 - 0.52 
0.52 - 0.42 
0.42 - 0.30 
0.30 - 0.17 
0.17-0.004 

FRICH 0.94 - 0.89 
0.89 - 0.82 

Table 6.4: Angular acceptance for intervals i in the Barrel RICH and in the 
Forward RICH. 

The coefficient Wi takes into account the thrust axis polar angle distribution 
in each bin i and is evaluated according to (6.12), substituting the quark 
polar angle e by the polar angle of the thrust axis ej : 

(6.16) 

where ni is the number of events in the bin i. 

Finally, the experimental charged kaon asymmetry A~ B will be extracted 
from the minimisation of the x2 function : 

X2 = 2: Wi FB .- i 
m ( AK Aobs)2 

i=l a, 
(6.17) 

where wi are the coefficients defined above, ai is the statistical error on the 
observed asymmetry Afbs and i runs over the m bins (corresponding to the 
mirrors) in cos () K. 

6.5.2 Correction for the contamination 

The measured asymmetry Af of the events \Vith a kaon identified in the 
i-th angular interval has to be corrected for the contamination of our kaon 
sample : the presence of 'fake' kaons will modify the asymmetry measured 
on events with only 'correctly identified' or 'true' kaon. We will see that 
these 'fake' kaons are mainly pions coming from the fragmentation which are 
thus produced with a relatively small asymmetry and which tends therefore 
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to reduce the asymmetry measured compared to the correct (or 'true') one. 
The asymmetry corrected for this effect Af0 rr is thus obtained by : 

A!<_ (l _ p.K)Abck9 

Acorr _ t t 

i - p.K 
t 

(6.18) 

where Pr is the purity of our kaon sample in the angular interval i and Abd'9 

is the asymmetry for the misidentified particles (mainly pi ons). 

Kaon identification purity evaluation 

The kaon identification purity (P/f) is defined (see equation 5.14) as the 
fraction of 'true' kaons identified as kaons in the sample of identified kaons : 

pK = pK = Numb. of 'true' K identified as K 
K - Total numb. of identified K 

(6.19) 

More precisely, it can be written as a function of the 'efficiencies' £][ to 
identify a charged particle X = e, µ, n±, K±, p as a charged kaon K± and 
of the numbers of charged particles N x present in the sample on which the 
identification procedure will be applied : 

(6.20) 

in the following, the 'efficiencies' £§ with X f- K will be called misidentifi­
cation efficiencies. 
In figure 6.8, we show the composition of our sample of identified K± as a 
function of the particle momentum as it is obtained from the full DELPHI 
simulation. We see that the major contamination of our sample comes from 
misidentified pions (the contribution of the electrons and muons is less than 
1 % ) and is almost constant in the momentum window useful for our analysis. 
Equation 6.21 can thus be developed as : 

P K,...., £/fNx 
- K CK ExNx + '-'7r N'lr 

(6.21) 

Extensive checks have been made to control the consistency between real 
data and simulation and various detailed comparisons between real data and 
simulated data are shown in chapter 5, last section. 
pK was evaluated by simulation as justified by the following considerations : 
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•Evaluation of NK and Nrr. 
Different studies about the production of charged hadrons at the zo reso­
nance have already been published from LEP experiments [8]. In the mo­
mentum range of interest for our analysis, they show discrepancies, of the 
order of 20% for charged kaons, between experimental results and predictions 
from theoretical hadronization models, including JETSET 7.3 PS. In [9] it 
is demonstrated that this difference comes mainly from an unsatisfactory 
description of the production of the charged kaons in heavy flavour events 
mainly due to the important uncertainties on the production rates of charged 
kaons from the decays of hadrons with b and c quarks. 
Until now, the DELPHI collaboration has provided the unique measurement 
of the inclusive production of K± in B hadrons [10] : BR(B --+ K± X = 
0.88 ± 0.05(stat) ± 0.18(syst)). 
A more recent study on the comparison of the production of charged hadrons 
in b-quark events and uds events [11] seems to confirm indeed that the prob­
lem is mainly concentrated in heavy quark events whereas the description of 
the production of the charged kaons in light quark events as predicted by the 
JETSET 7.3 PS model (see figure 6.9) is satisfactory. 

Concerning the evaluation of Nrr, [11] shows that the experimental deter­
minations are in agreement with the expectation of the theoretical model 
JETSET 7.3 PS (see figure 6.9). 
For all these reasons, the terms N K and Nrr of equation 6.21 were therefore 
evaluated on simulation using the JETSET 7.3 PS Model. 

• Evaluation of Elf. 
In principle, the best way to evaluate the efficiencies is by using real data. 
At LEP, real kaons can be obtained from a sample of mesons </>(1020) which 
decay into K+ K- or from a sample of D* decaying with production of K±. 
But a reliable measurement of the kaon identification efficiency using these 
samples of charged kaons in the momentum region exploited in our analysis 
is illusive. There are two main problems : 

- the first one is a problem of statistics. To select charged kaons with high 
momentum (p > 10 GeV /c), we have to use samples of </>(1020) or D* with 
even higher momentum (for example, greater than 20 GeV /c in the case of 
the </>( 1020)) and a sufficient statistics is not available to perform a detailed 
study in function of the polar angle and the momentum of the K±. 

- the second one is a problem of event topology : the kaon identification 
efficiency in the RICHes depends on the event topology. The use of events 
with a particular topology as coming from the decay of </>(1020) or D* leads 
to identification efficiencies which are not directly applicable to our case. For 
example, a </>(1020) with a momentum greater than 20 GeV /c decays into 
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two charged kaons K± with polar angles differing only by "' 16 mrad. Con­
sequently, due to overlapping of rings, the reconstruction of the Cherenkov 
angles produced by these two tracks will be less efficient because of higher 
number of ambiguous photoelectrons. 
A study about the determination of the identification efficiency of charged 
kaons based on the reconstruction of the invariant mass of the </>(1020) is pre­
sented in [12]. However, in the momentum region of interest for our analysis, 
the kaon identification efficiency integrated over the whole RICH acceptance 
and on the considered momentum window, has a relative error of at least 
20%. 
Therefore, the kaon identification efficiency was evaluated on simulation. 
In [13], one can find a test of the consistency of the kaon identification ef­
ficiency evaluated on real data and simulation, using the reconstruction of 
D*+ decaying into (K-7r+)7r+. 
The results obtained considering the whole momentum range of the kaons 
produced (p > 2 GeV /c) over the whole angular acceptance of the BRICH 
show a good agreement between the experimental results (82.5% ± 2.8%) 
and the simulation (80.7% ± 0.7%). 

• Evaluation of E;(. 
At the end of chapter 5, we show some distributions (see figures 5.11, 5.12, 
5.17, 5.18) which allow to control the consistency between data and simu­
lation and which lead to the conclusion that the misidentification efficiency 
for Cherenkov angles close to saturation (pion misidentification efficiency) is 
underestimated. 
This suggests to correct the pion misidentification efficiency E;( evaluated 
on simulation, and therefore to correct the fraction of pions in our sample of 
identified kaons. 
In order to determine the scaling factor o(E;() which will have to be applied 
on the misidentification efficiency computed on simulation ( (£;()simulation) in 
order to reproduce the results obtained on real data ((E;()aata) : 

(E;()aata = o(Ef;)(Ef:)simulation (6.22) 

two distinct samples of real data were used (see figures 6.10 and 6.11) : 
- muons coming from semi-leptonic decays identified by the Muon Cham­

bers (at the momentum range of interest for our analysis, the RICH detector 
cannot distinguish between muons and pions) ; 

- pions from reconstructed K2 decays (K2 -+ 7r+7r-). 

These samples are not ideal : 
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- Again, there is a problem linked to their particular topology. Most of 
the muons come from the semi-leptonic decays of hadrons with band c quarks 
and have therefore a large transverse momentum with respect to the jet axis 
to which they belong, which leads to reconstruct the average Cherenkov an­
gle of well isolated tracks. On the other hand, at high momenta, the opening 
angle between the two outgoing pions coming from the decay of a K.? is very 
small and the Cherenkov angle reconstruction is more complicated because 
of the pion rings overlap. 
Therefore, these two samples taken separately are not considered as repre­
sentative of the our kaon sample background but more as complementary in 
the topological point of view. 

- Because of the very high background ( 11"± / µ) rejection power of the kaon 
identification algorithm, the statistics left after the kaon identification was 
very small (of the order of hundred tracks) and no momentum or angular 
dependence of the correction to the pion misidentification efficiency could be 
studied. Only a global scaling factor with a notable uncertainty could thus 
be evaluated on each sample. 

• About 10000 muons were available in the considered momentum window 
and the Barrel RICH angular acceptance. The purity in muons of this sam­
ple was estimated on simulation to be 92% with a contamination of pions 
of 4.5% and of kaons of 3%. In order to reduce as much as possible this 
kaon contamination, an additional cut on the loss of energy by ionization 
measured in the TPC was required which leads to a subsample of about 4000 
muons with a residual kaon contamination of 0.67%. 
The kaon identification algorithm used in our analysis was then applied and 
about 120 muons were wrongly called kaons. Figure 6.10 shows the com­
parison between the misidentification efficiencies evaluated on real data and 
simulation (7). The ratio between the number of muons identified as kaons 
estimated on real data and simulation gives an estimation of the scaling 
factor: 

o(Ef:)µ = 1.4 ± 0.2 (6.23) 

• About 2800 candidates pions coming from kinematically reconstructed 
K~ decays were also used. The vertex corresponding to the decay of the K.? 
was reconstructed as explained in (14]. The purity in pions of this sample was 
estimated on simulation to be greater than 97% with a kaon contamination 
of about 1.4%. 
The same procedure as the one explained for the muon sample was applied 
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on this pion sample: about 150 pions were wrongly called kaons. Figure 6.11 
shows the comparison between the misidentification efficiencies evaluated on 
real data and simulation [7]. The ratio between the number of pions wrongly 
called kaons estimated on real data and simulation gives : 

o( Ef:)7r = 1.3 ± 0.3 (6.24) 

The results found in the two samples are in agreement within the statistical 
errors. The weighted mean value of these two results gives : 

o(Ef:) = 1.37 ± 0.17 (6.25) 

Another method based on the actual average Cherenkov angle distribution 
is described in [16]. The Cherenkov angle distribution has two components: 
a Gaussian component centred around the expected Cherenkov angle for 
a given particle hypothesis and an almost linear shaped background term. 
Particles can be misidentified as kaons either because a separation of only two 
standard deviations with respect to the pion hypothesis is required to reject 
them, or because of the presence of this non-Gaussian background term. To 
study these effects, particles outside the pion and kaon signal regions were 
selected in real and simulated data. Two regions were defined (A and B, 
see figure 6.12) where the number of particles were counted in real data and 
simulation : 

A 
81"0eas - e7r 

ring c > 2.5 
a ring 

81"0eas _BK e111;eas - e7r 
(6.26) B ring c > 2.5 and ring c < -2.5 

a ring a ring 

An average scaling factor of 1.4 ± 0.1 in the barrel region and of 1.05 ± 0.1 
in the forward region was found and was applied to the pion misidentifica­
tion efficiency estimated on simulation. These scaling factors are similar for 
regions A and B, and compatible with the one as determined on the muon 
and pion samples. 
After scaling up the background, for each bin in cos BK, the kaon purity ex­
tracted from simulated data was decreased by a factor going from 0.4% to 
4.9% as a function of the polar angle (the correction factor decreases when 
I cos e K I increases. 
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The kaon purity corrected this way is shown on figure 6.13 for each angular 
interval i. 

As it can be noticed on this figure 6.13, the kaon identification purity de­
pends strongly on the kaon polar angle. This dependence can be explained 
as follows : the smaller the track polar angle is, 

- the longer the track inside the tracking system (TPC) is and thus the 
better the track reconstruction is, which gives a smaller error on the track 
extrapolation inside the RICH ; 

- the smaller the distance that the photoelectrons have to cross inside the 
drift volume to reach the MWPC is. Consequently, the probability that they 
are absorbed during their drift and the possibility of distortions are reduced. 
For all these reasons the reconstruction of the Cherenkov angle is better. 
The steps between the four dots corresponding to the Forward RICH data 
and the Barrel RICH dots is due to the poorer tracking in the very forward 
region which induces a poorer Cherenkov angle reconstruction in the Forward 
RICH. 

Background asymmetry evaluation 

To correct the asymmetry for the problem of the contamination (see equa­
tion 6.18), we still have to evaluate the asymmetry of the events which con­
stitute the background, i.e. events with a particle misidentified as a kaon, 
Abckg in equation 6.18. For this purpose, counting the number of background 
events with K+ and K- in angular intervals on the full detector simulation 
is sufficient. In order to reduce the uncertainty due to the limited statistics 
of the simulation, Abckg was computed explicitly over all quark flavours, and 
extracted using the relation 6.13 for the background events : 

A bckg = '"°' ,,..,bqckg (2cbqckg _ 1) Aq ( d b) L..J'--< q= ,u,s,c, ( 6.27) 
q 

where a~ckg is the fraction of qq events with a misidentified kaon, c~ckg is 
the probability that the primary quark charge is correctly tagged by the 
misidentified kaon and Aq are the quark asymmetries. In order to reduce the 
statistical error, only the coefficients a~ckg and c~ckg were computed directly 
on the simulation, while all the quark asymmetries were fixed at their Stan­
dard Model values as predicted by the ZFITTER program3 [15). 

3 The free parameters of the model were fixed to : the mass of the z0 Mz = 91.186 
Ge V / c2

, the mass of the top quark mt = 175 Ge V / c2 , the mass of the Higgs boson ni H = 
300 GeV/c2 and the strong coupling constant a 8 = 0.122 [17]. 
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The background asymmetry computed in this way is found to be almost 
negligible : 

Abckg = 0.0012 ± 0.0016 (6.28) 

6.5.3 Material asymmetry evaluation 

The hadronic cross-sections of the charged kaons are different : 

(6.29) 

which means that negatively charged kaons (K-) are more absorbed by the 
detector material they have to cross before entering the RICH detectors than 
positively charged kaons (K+). This induces an artificial asymmetry due to 
material (Amat). This asymmetry is in first approximation proportional to 
the material length crossed and, assuming the detector made of concentrical 
homogeneous cylindrical shells of material, has a ( 1 /sin BK) angular depen­
dence on the kaon polar angle and varies between 2% (in the forward region) 
to 0.7% (in the barrel region). 
For a given angular interval i, the observed kaon asymmetry (which is, in 
fact, the 'true' asymmetry at the production level, i.e. before entering the 
detector) can be written as : 

A~bs = NP(K-) - N;°(K+) 
i NP(K-) + NP(K+) 

(6.30) 

where NP(K-) and NP(K+) are the numbers of K- and K+ really produced 
in the angular interval i. 
These numbers are related to the numbers of kaons detected in a bin i ap­
pearing in equation 6.14 by : 

NK:( cos Bi) = Ef- NP(K-) 

N-J<:( cos Bi) = Ef+ NP(K+) 
(6.31) 

with EK- (EK+) the probability for a K- ( K+) not to have interacted before 
getting out of the RICH detectors (i.e. the probability to reach the OD (for 
the barrel analysis) or the FCB (for the forward analysis) without interacting 
with the detector material). 
Defining, for a given interval i in cos BK, the ratio ri between these probabil­
ities : 

(6.32) 
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the observed asymmetry becomes : 

(r· - 1) + A<;orr(r· + 1) 
A?bs = ' i i 

i ( ri + 1) + Aiorr ( ri - 1) 
1 

~ Aforr + -(ri - 1) for I ri - 1 I<< 
2 

150 

(6.33) 

where Aiorr is the asymmetry corrected for the contamination in the angular 
interval i or, in other words, the asymmetry of the events with the charged 
kaon correctly identified (see section 6.5.2). 
For the angular interval i, the material asymmetry Aywt is therefore defined 
as: 

( 6.34) 

and was evaluated on a sample of 2.4x106 hadronic events simulated through 
the full DELPHI simulation. 
For each angular interval i, the ratios : 

(6.35) 

between the number of K- and K+ at the production level and the number 
of charged kaons entering the 0 D (for the barrel region) or the FCB (for the 
forward region) are computed and the correction factors ri evaluated. To 
reduce the statistical uncertainty on the material asymmetry, a fit was done 
to the distribution of the material asymmetry versus the number of charged 
kaons interacting with the material. 
The material asymmetry as a function of cosine of the kaon polar angle is 
shown on figure 6.14, it ranges from 2% to 0.7%. The systematic error on 
A mat is 10% mainly coming from the uncertainties in the difference in the 
nuclear cross-sections of p(n)K+ and p(n)K-. 
In order to reduce the statistical uncertainty on Ayiat obtained as explained 

above, another technique to evaluate the asymmetry due to material is pre­
sented in (16]. It is based on a fast analytical calculation using the DELPHI 
database which contained the description of the material of the various com­
ponents of the detectors and the nuclear interaction cross-section calculation 
of the full simulation for a grid of points in the 3-dimensional space of K 
momenta, polar and azimuthal angles. A weighted mean according to the 
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distributions of these three variables was computed for each mirror. The sta­
tistical error on this procedure is negligible. Moreover, the method allows to 
evaluate the sensibility of this correction to the pK cross-section parametri­
sation by using an alternative one given in [3] : this uncertainty source was 
found to be 0.0015 on average. 

6.5.4 Charged kaon asymmetry: results 

Due to the different event selection for the barrel analysis and the forward 
analysis, the experimental charged kaon asymmetry A~ B was evaluated sep­
arately for each analysis (barrel and forward). 
The procedure described in section 6.5.1 allows, for each polar angle interval 
i, to compute the observed asymmetry Afbs, corrected for the charged kaon 
purity and the interaction of the K± with the detector material. The minimi­
sation of the function ( 6.17) gives the following values for the experimental 
charged kaon asymmetries : 

Barrel analysis 

A~B 0.0460 ± 0.0064(stat.) ± 0.0003(syst.) 
( 6.36) 

for all mirrors, with a x2 per degree of freedom of : x2 /11 = 0.65 (see 
figure 6.15). 

To check the consistency of the measurement, the fitting procedure was 
repeated for each hemisphere separately : 

A~B(z > 0) 

A~B(z < 0) 

0.0466 ± 0.0088( stat.) 

0.0453 ± 0.0093( stat.) 
( 6.37) 

which are compatible with each other within one standard deviation 
and which therefore demonstrate, as expected, the compatibility be­
tween the experimental asymmetries evaluated in each hemisphere sep­
arately. The charged kaon asymmetry ( Afbs) versus the weights Wi are 
shown on figure 6.16 separately for each hemisphere. The solid line 
show the result of the fit and the dashed lines represent one standard 
deviation. The x2 per degree of freedom are x2 /5 = 0.51 for z > 0 and 
x2/5 = 0.93 for z < o. 
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Forward analysis 

A~B = 0.031 ± 0.0ll(stat.) ± 0.0006(syst.) (6.38) 

with a x2 per degree of freedom of x2 /3 = 1.42 (see figure 6.17). 
The contributions to the systematic error are listed in table 6.5 for both 
analysis. They come from the the propagation of the systematic error due 
to the correction coefficients for the kaon purity and the interaction with 
detector material. 
As it is expected, the charged kaon asymmetry evaluated separately in the 

Contribution to the systematic error on A1J;s ( x 10-4
) Barrel Forward 

Kaon sample contamination 0.30 0.50 
K+ / K- different interaction with material 0.22 0.70 

Abck9 2.60 5.70 
Total 2.63 5.80 

Table 6.5: Contributions to the systematic error on the charged kaon asym­
metry for the barrel analysis and for the forward analysis. 

barrel region and in the forward region are compatible with each other within 
one standard deviation. 

6.6 s-quark asymmetry 

6.6.1 From the kaon asymmetry to the s-quark asym-
metry 

The kaon asymmetry measured experimentally (A~s) is in fact a statistical 
average of the kaon asymmetries from all quark flavour asymmetries weighted 
by a Monte Carlo estimated factor. This factor depends on the fractions of 
kaons produced in each flavour event and on the probability to correctly tag 
the primary quark charge. Accordingly, the experimental kaon asymmetry 
can be expressed in terms of the qq asymmetries as : 

A~B = L:aq (2cq -1) Aq (q = d,u,s,c,b) (6.39) 
q 

where: 
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- cxq are defined as the fractions of kaons produced in the events of flavour q. 
They can be expressed in terms of the original fractions of qij events in 
the selected hadronic sample Rq = r qq/f had and of the flavour selection 
efficiencies Eq : 

CXq = 
"£J=d,u,s,c,b RJEJ 

(6.40) 

The terms appearing in equation 6.40 were evaluated by simulation. 
Rq was calculated thanks to the ZFITTER program with the values of 
the input parameters fixed at the same values than for the evaluation 
of the Aq (see section 6.5.2). To take into account the experimental 
effects of the detector acceptance and efficiency, the Eq were evaluated 
with JETSET PS 7.3 and the full DELPHI simulation. 

- Cq are defined as the probabilities that the sign of the charge of the identi­
fied kaon points out correctly the event hemisphere, as defined by the 
reconstructed thrust axis, containing the primary quark after the QCD 
parton cascade. With this definition, it is possible to restrict the cor­
rections coming from the perturbative QCD phase of the hadronization 
only to the primary quark direction estimator. The Cq were evaluated 
with JETSET PS 7.3 and the full DELPHI simulation. 

As it can be noticed in table 6.6, the evaluation of cxq gives different values 
following the analysis region (barrel or forward) because they depend on the 
flavour selection efficiencies Eq which are different for each analysis, while the 
values of the cq are, as expected, independent of the data treated. 

Flavour Barrel Forward 
CXq Cq CXq Cq 

d 0.1425 ± 0.0013 0.328 ± 0.004 0.1038 ± 0.0021 0.329 ± 0.009 
u 0.1356 ± 0.0012 0.264 ± 0.004 0.0979 ± 0.0020 0.246 ± 0.009 
s 0.5523 ± 0.0029 0.868 ± 0.002 0.4290 ± 0.0048 0.878 ± 0.003 
c 0.1600 ± 0.0013 0.835 ± 0.003 0.2331 ± 0.0033 0.859 ± 0.005 
b 0.0091 ± 0.0003 0.809 ± 0.013 0.1359 ± 0.0024 0.809 ± 0.007 

Table 6.6: Computed values for the flavour selected fractions ( cxq) and quark 
charge identification efficiencies ( cq) for the Barrel and the Forward regions. 
The errors given are due to the limited simulation statistics. 

From equation 6.39 we then extract the measured s-quark asymmetry As. 
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To obtain the pole asymmetry A~8 from this measured asymmetry, a few 
corrections have to be applied : 

• QED correction. 
Correction due to initial state radiation : the emission of a photon in 
the initial state has the effect of reducing the centre of mass energy 
of the system e+ e-. Due to the fast evolution of the cross-section in 
function of the energy around the zo resonance peak, this correction 
induces a modification of the asymmetry which varies rapidly around 
the peak (see figure 4.2) ; 

• Effects of the energy shift . 
The centre of mass energy at which LEP was running deviates some­
what from -JS= Mz ; 

• Correction due to/ exchange and 1Z interference. 

These corrections ((8Aq)i) have been calculated for each flavour q using the 
ZFITTER program according to the procedure described in [17]. They are 
generally small for quarks. The corrected asymmetry (A~ii) can be written 
as: 

A~ii = Aq + 2:(8Aq)i ( 6.41) 
t 

The values of the correction coefficients ( 8Aq )i are given in table 6. 7. 

Flavour QED -Ji=Mz ,,,z 
d 0.0042 -0.0015 -0.0003 
u 0.0108 -0.0040 -0.0007 
s 0.0042 -0.0015 -0.0003 
c 0.0108 -0.0040 -0.0007 
b 0.0042 -0.0015 -0.0003 

Table 6.7: Correction coefficients ((8Aq)i) calculated with the ZFITTER 
program as described in [17]. 

• QCD correction. 
This is the correction due to the fact that the estimated quark direction 
using the thrust axis differs from the true one because of gluon emission, 
hadronization and decays, and experimental reconstruction problems of 
the thrust axis (undetected particles, resolution of the charged particle 
momentum and neutral particle showers energy). 
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It has been estimated for each flavour according to the procedure described 
in [18] using the JETSET PS 7.3 simulation program. 
The pole asymmetry A~ii is finally obtained from the measured asymmetry 
Aq according to the following expression : 

A~ii = (Aq(l + C!hrust) + 2;:(8Aq)i) (6.42) 
t 

where c:hru.9t are terms which take into account the QCD correction ex­
plained above. They were computed according to the procedure described 
in [18] using JETSET PS 7.3 and the full DELPHI detector simulation. 
On figure 6.18, we show the difference between the polar angle of the pri­
mary quark and the polar angle made by the measured thrust axis (oriented 
in the direction of the primary quark). The values of the c:1iru.9t coefficients 
as computed on simulation are given in table 6.8. The errors are due to 
the limited simulation statistics. Since only heavy flavour asymmetries are 

Flavour cthrust 
·a 

Barrel Forward 
d -0.029 ± 0.006 -0.013 ± 0.004 
u -0.029 ± 0.006 -0.018 ± 0.005 
s -0.025 ± 0.003 -0.012 ± 0.002 
c -0.020 ± 0.005 -0.011 ± 0.003 
b -0.035 ± 0.015 -0.005 ± 0.002 

Table 6.8: Correction coefficients for bias on primary quark direction due to 
QCD gluon emission, fragmentation and thrust axis reconstruction when the 
thrust axis direction is used as an estimator. 

experimentally known, assumptions on light quarks asymmetries must be 
made, according to the Standard Model predictions : 

Ao -Ao ss - dd 

A~11 = >.A~J 
(6.43) 

with >. = 0.7122, the Standard Model prediction computed from ZFITTER. 
This choice has been done in order to use the measurement of A 0 - as a 

SS 

check of the coupling universality in the light quark sector (the Standard 
Model predicts the same asymmetry for b and s quark asymmetry) since 
the heavy flavour contribution is computed from independent measurements. 
The heavy flavour quark asymmetries are taken from their own experimental 
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value [19) : 

A~;; = 0.0979 ± 0.0023 

A~c = 0.0735 ± 0.0048 

The careful analysis described above leads to the following results : 

A~8 = 0.127 ± 0.02l(stat.) for the Barrel analysis 

A~., = 0.052 ± 0.045( stat.) for the Forward analysis 
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(6.44) 

(6.45) 

which taking into account only the statistical errors (coming from the prop­
agation of the statistical errors on A~8 ) differ by about 1.50'. Before going 
further comparing these two measurements and drawing definite conclusion, 
the systematic errors which are different for the Barrel and the Forward anal­
ysis should be evaluated. 

Let us notice that we have checked that these results are stable for a vari­
ation of the ,\ obtained by varying the values of mH and mtop used in the 
ZFITTER program. 

6.6.2 Systematic errors 

Sine the extraction of the ss asymmetry from the observed K± asymmetry 
requires the evaluation of various quantities by simulation of the fragmen­
tation model and of the response of the DELPHI detector, the systematic 
uncertainties on A~8 (6.45) can come from the following different sources : 
the limited simulation statistics, the experimental method, the input quark 
asymmetries, and the parametrisation of the fragmentation model (JETS ET 
7.3 input parameters). Among them, all but the fragmentation model uncer­
tainties will be treated under the topic 'experimental systematic errors'. 
Due to the different event selection used they have been studied and eval­
uated separately in the Barrel and in the Forward regions. The difference 
is given by the sources of errors specifically connected with the Brown and 
Frank procedure and by the different amount of bb events, almost negligible 
in the Barrel while sizeable in the Forward. 
The detailed breakdown of all the error sources discussed and of their specific 
effect on A~8 is given in table 6.9. 

A. Experimental systematic errors 

• The uncertainties on A~;; and A~c ( 6.44) were propagated, taking 
into account the 10% correlation between these two quantities. The 
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resulting uncertainties on A~8 are of 0.0018 in the Barrel region and of 
0.0035 in the Forward region. 

• The systematic errors on the experimental asymmetry A~ B 

listed in table 6.5 : systematic uncertainty due to the different ab­
sorption of the K+ and K- with the material and the systematic un­
certainty on the correction for the contamination (which is due to the 
uncertainty on the correction of the misidentification of the kaons using 
the simulation), induce uncertainties on A~8 of 0.0009 and 0.0023 in the 
Barrel and in the Forward region, respectively. 

• The error due to the limited simulation statistics for the evalu­
ation of the coefficients aq and cq was found to be 0.0011 and 0.0044 
for the Barrel and the Forward region respectively. 

• The uncertainty due to the momentum resolution of the selected 
K±. In principle, this effect could be studied independently of the 
simulation by varying the lower and upper limits of the momentum 
window of a quantity corresponding to the momentum resolution in 
the region around these limits. However, this approach presents two 
disadvantages : 

- first, the global variation of the momentum window would overesti­
mate the effect of the migration and thus would tend to overestimate 
the error; 

- secondly, it does not allow a study of the possible migration inside 
the momentum window used. Moreover, the uncertainty on the 'true' 
momentum of the charged kaon presents an intrinsic limit due to the 
threshold of the emission of the Cherenkov light in the gas radiator. 
Therefore, the effect of the resolution on the K± momentum was com­
puted with the full DELPHI simulation, selecting events according to 
the true K± momentum instead of the reconstructed one and evalu­
ating the corresponding variation induced on the coefficients aq and 
Cq. The obtained systematic errors on A~8 is 0.0011 and 0.0044 in the 
Barrel and in the Forward region, respectively. 

• In the Barrel region, where the Brown and Frank algorithm was used, 
a source of error is given by the quality of the simulation to describe 
the significance of the tracks which are used to compute the probability 
Pi. An estimate of this error is obtained by comparing the probability 
computed using negative impact parameters Pi in the sample with the 
selection cut Pi > 0.15, where the contribution of heavy flavours and 
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secondary decay vertices to Pi is highly suppressed. The difference 
between the selection efficiencies computed using real and simulated 
distribution of Pi is used as an estimate on the uncertainty coming 
from the detector resolution on impact parameters which is 
found to be 0.00004. 

B. Simulation model uncertainties 

The uncertainties which come from the Monte Carlo modelling (see section 
2.3.1) can be split into three classes which will be detailed in the following : 
(1) systematic uncertainties from charm quarks, (2) bottom quarks and (3) 
light quarks. They were evaluated following different approaches for the 
heavy flavour sector (classes ( 1) and ( 2)) and the light flavour sector (class 
( 3)). This is due to the following considerations : 

- The K± production in the selected momentum range in the light flavours 
is strongly dominated by the fragmentation process, while in the heavy 
flavour sector it is due mainly to the weak decays of the hadrons with b 
and c quarks. Therefore, the Brown and Frank procedure does not affect 
significantly the K± production in the light flavour sector while it introduces 
biases in the heavy one. 

- Moreover, in the light flavour sector, the fragmentation model param­
eters play a dominant role while in the heavy flavour sector an important 
source of theoretical errors is given by the uncertainties in the D and B 
mesons branching ratios into channels with K±. 

• ( 1) For charm quarks the following quantities related to the frag­
mentation were taken into account: the fractions of different charmed 
hadrons f (D±) , f(Ds), f( Cbar) (taking into account the correlations 
among the fractions), the average decay multiplicity of c hadrons, the 
charm quark fragmentation (through the mean energy taken by the 
charmed hadrons < Xc >) and (for the Barrel region only) the D me­
son lifetimes. The uncertainties in these quantities were taken from [18] 
and treated as described in this reference. Another source of error is 
coming from the uncertainties on the branching ratios of charmed par­
ticles into kaons BR(D--+ K~X), BR(D0 --+ K- X), BR(D0 --+ K+ X), 
BR(D+ --+ K- X), BR(D+ --+ K+ X), BR(Ds --+ K- X), BR(Ds --+ 
K+ X). These various hadrons with a c-quark which could have been 
produced have different probability to contribute to the event selection 
from the point of view of the Brown and Frank algorithm. The decays 
of these hadrons can produce charged kaons K± which obviously influ­
ences the selection efficiency and the correlation between the charge of 
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the K± and the charge of the primary quark. 
The values of these branching ratios quoted in [3) were used. 
In order to evaluate the corresponding uncertainties on A~8 , the simu­
lated events were re-weighted according to the uncertainties in all the 
observables listed, and the variations in A~8 due to the variations in the 
coefficients cxq and cq were used as an estimate of the systematic error 
due to this sources. 

• (2) For bottom quarks a procedure similar to the one used for the c 
quark was followed. The study has been done in a slightly different way 
for the Barrel analysis and the Forward analysis, due to the significant 
difference in the b-quark content of the selected sample of events. 
For the Barrel analysis the following quantities related to the b-quark 
fragmentation were considered: the B lifetime, B hadron decay multi­
plicity, the fragmentation function of b-quark (i.e. < Xb > ), where the 
range of variations quoted in [18] were used. In addition the uncertainty 
in the branching ratio of bottom quarks into kaons BR(b-+ K± X) was 
propagated to the selection efficiency, and the uncertainty in the av­
erage of the branching ratios of the mixture B± - B 0 in K+ and K­
separately BR(B± - B 0 -+ K+ / K-X) was propagated to the charge 
selection efficiency cb. 

For the Forward analysis, due to the absence of the Brown and Frank 
mechanism, no error from the B lifetime was considered. Furthermore, 
the error on cq was studied in larger detail, due to the bigger importance 
of this coefficient in the final result. The influence of the uncertain­
ties in the fractions of B±, B 0 , Bs and bottom hadrons as computed 
in (3] on cb were taken into account. Moreover the uncertainties on 
the individual branching ratios BR(B± -+ K+ X), BR(B± -+ K- X), 
BR(B0 -+ K+ X) and BR(B0 -+ K- X) as measured in [20] instead 
were used. In events with Ds coming from a Bs, the error on the 
branching ratios of D s decays into K± was considered. 

Another possible source of errors is the gluon splitting mechanism which 
leads to c and b quark production in the fragmentation process. The 
g -+ cc and g -+ bb rates were conservatively varied by 50% in order to 
evaluate the effects on A~8 • 

• (3) In the light quark sector the Brown and Frank mechanism ap­
plied in the Barrel region implies that the light quark selection has 
uncertainties due to the presence of secondary vertices (due to photon 
conversion and hyperon decay) which tend to bias P'J towards low val-
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ues. Following the same approach than the one used in [21], the rate 
of photon conversion was varied by 303 and that of K~ and A decays 
of 103. 
The other important source of errors for the light quarks is due to the 
model which was used to describe the K± production in uu, dd, ss and 
to compute the flavour selection efficiencies Eq and the charge selection 
efficiencies cq for these events. The JETSET PS model which was used 
depends on several phenomenological input parameters which must be 
adjusted in order to reproduce the real data. The physical phenomenon 
studied being the production of fast K±, only the 10 Lund parame­
ters to which the K± is most sensitive (following the study described 
in [6]) where considered, e.g. the fundamental fragmentation parame­
ters a, O'q, AQcD, Q0 , the s-quark production suppression 'Ys, the diquark 
production suppression 1;!(qq/, and the rate of probability of production 

of the different multiplets of particles P(1S0 ), P(3S1), P(1S0 ), P(3S1) 4 • 

These parameters which describe the fragmentation process were varied 
(see Appendix B) applying the method explained in [6] and [22] and 
the corresponding uncertainties on the coefficients Ed,cd,Eu,C10 E8 ,Cs were 
evaluated both in the Barrel and the Forward region (see table 6.9). 

The total systematic error on the ss pole asymmetry A~8 is found to be 
0.0043 for the Barrel analysis and 0.0087 for the Forward analysis. 

Finally, the results obtained for A~8 as determined in the Barrel and in the 
Forward regions with systematic errors are : 

for the Barrel anal. A~8 = 0.127 ± 0.021(stat.) ± 0.0043(syst.) 

A~8 = 0.052 ± 0.045( stat.) ± 0.0087( syst.) for the Forward anal.(6.46) 

which are compatible within one standard deviation. 

Combining these two asymmetries, we get the following result for A~8 : 

A~8 = 0.114 ± 0.019( stat.) ± 0.005( syst.) (6.47) 

4 In JETSET, mesons are produced according to their quark contents in the six multi­
plets with smallest mass : if L is the orbital angular momentum of the quark, S is its spin, 
J = L + S is the total angular momentum, using the notation Zs+l Ls commonly applied 
in atomic physics, these six states are 1 So, 3 So, 1 P1 , 3 Po, 3 P1 and 3 P2 • 



6.6 s-quark asymmetry 161 

The conclusions concerning our result are summarize in the next chapter. 
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Systematic source oA~.• (xlO ·4 ) 

Barrel Forward 

A~c and A~b 17.6 34.5 
Experimental asymmetry fit 8.7 22.5 
Simulation statistics 11.4 43.9 
K± momentum resolution 8.4 6.2 
Impact parameters resolution 0.4 -
f(D±) = 0.233 ± 0.028 0.3 0.6 
f(Ds) = 0.102 ± 0.037 0.5 1.0 
J ( Cbar) = 0.065 ± 0.029 0.8 3.6 
c hadrons decay multiplicity = 2.35 ± 0.06 6.7 2.4 
< Xc >= 0.484 ± 0.008 (charm fragmentation) 10.7 35.5 
BR(D --t K2X) = 0.46 ± 0.06 2.2 5.8 
D mesons lifetimes 0.1 -
BR(D0 --t K- X) = 53 ± 4% 5.4 0.6 
BR(D0 --7 K+ X) = 3.4 + 0.6 - 0.4% 2.8 4.6 
BR(D+ --t K- X) = 24.2 ± 2.8% 1.0 1.1 
BR(D+ --t K+ X) = 5.8 ± 1.4% 4.4 8.9 
BR(Ds --t K- X) = 13 + 14 - 12% 2.0 1.1 
BR(Ds --t K+ X) = 20 + 18 - 14% 18.6 33.5 
B hadron decay multiplicity= 5.73 ± 0.35 0.1 10.8 
< Xb >= 0.702 ± 0.008 (bottom fragmentation) 0.1 16.3 
B hadrons lifetimes 0.1 -
BR(b --t K± X) = 88 ± 19% 0.6 26.6 
BR(B± - B 0 --7 K+ I K- X) 0.1 -
f(B±) = 37.8 ± 2.2% - 1.4 
f(B0

) = 37.8 ± 2.2% - 1.4 
f(Bs) = 11.2 ± 1.9% - 4.0 
J(bbar) = 13.2 ± 4.1% - 7.6 
BR(B0 --t K- X) = 0.73 ± 0.08 - 3.9 
BR(B0 --t K+ X) = 0.13 ± 0.04 - 0.7 
BR(B+ --t K- X) = 0.58 ± 0.08 - 10.l 
BR(B+ --t K+ X) = 0.13 ± 0.05 - 4.8 
BR(Ds --t K- X) from Bs - 4.1 
BR(Ds --t K+ X) from Bs - 5.0 
photon conversion ±30% 1.5 -
K~(u, d, s) ± 10% 0.4 -
A(u, d, s) ± 10% 0.4 -
g --7 cc± 50% 0.6 -
g --7 bb ± 50% 0.1 -
td 9.0 4.2 
fu 14.8 11.1 
Es 8.0 8.1 
cd 13.6 2.9 
Cu 4.4 6.3 
Cs 9.7 3.9 
Total systematic error 42.7 86.5 

Table 6.9: Summary of the systematic errors on the pole asymmetry of s 
quark measurement. 
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Figure 6.5: Distribution of the Cherenkov photons in the photon detector 
(also called drift box) of the Forward RICH, . 
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Figure 6.6: Illustration of an ss event with an identified charged kaon. 
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Figure 6.7: Illustration of the term (2c-1) in equation 6.13 with c the prob­
ability that a negative kaon correctly tagged an s-quark. 
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Figure 6.8: Composition of our sample of identified kaons as a function of 
the kaon momentum. Starting at the bottom, we show the fraction of well 
identified kaons, pious and protons in the Barrel region. 
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Figure 6.9: Fractions of charged particles measured in a sample of light quark 
events (the rejection of the b-quark events being obtained requiring the Brown 
and Frank probability for tracks in the total event with positive significance 
to be : Pi > 0.15). We notice that the experimental spectra are in good 
agreement with the ones predicted by the JETSET PS 7.3 Model. 
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Figure 6.10: Misidentification efficiencies evaluated on data (dots) and sim­
ulation (lines) for semi-leptonic muons versus momentum (Barrel RICH). 
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Figure 6 .11: Misidentification efficiencies evaluated on data (dots) and sim­
ulation (lines) for pions from K 0 decays versus momentum (Barrel RICH). 
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Figure 6.12: Distribution of the Cherenkov angle versus particle momentum 
showing the two reg10ns of background as defined by expressions 6.26. 
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Figure 6.13: Charged kaon purity in the momentum range 10 < p < 24 
GeV /c in both RICHes as a function of the cosine of the kaon polar angle 
(cos Br<). 
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Figure 6.14: Material asymmetry as a function of the cosme of the polar 
angle of the kaon in both RICHes. 
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Figure 6.15: Aibs as a function of Wi (defined by equation 6.116) in the Barrel 
RICH, with the superimposed fitted function (solid line). The dashed line 
show the result of one standard deviation. 
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Figure 6.16: Aibs as a function of Wi (defined by equation 6.116) in the Barrel 
RICH, separately for each hemisphere z < 0 and z > 0 with the superimposed 
fitted functions (solid line). The dashed lines show the result of one standard 
deviation. 
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Figure 6.17: Aibs as a function of Wi (defined by equation 6.116) in the For­
ward RICH, with the superimposed fitted function (solid line). The clashed 
lines show the result of one standard deviation. 
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Figure 6.18: Difference between the the polar angle of the primary quark and 
the polar angle made by the measured thrust axis (oriented in the direction 
of the primary quark). 
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Chapter 7 

Conclusion 

The Standard Model which describes the strong and electroweak interactions 
predicts a forward-backward asymmetry in the final state of the e+ e- colli­
sions at the zo pole. 
This thesis, based on l.35x 106 hadronic zo events collected by the DELPHI 
detector at LEP during 1994, presents for the first time in details a complete 
study of the determination of this asymmetry in the case of the process : 

This process which lies within the light quark sector is, until now, only poorly 
investigated because of the experimental difficulty to isolate a sample of such 
events with relatively high purity : 

• In the barrel region, our method of enrichment which exploits the 
Vertex Detector in association with the Ring Imaging CHerenkov (Barrel 
RICH) detector allowed to reach a purity never attained of about 55%. 

• In the forward region, although the procedure used to reduce the 
contamination of heavy quark events can not be applied because of the little 
overlap of the Forward RICH with the acceptance of the Vertex Detector, we 
reached a purity of 43%. 

The measurement of the ss asymmetry was deduced from the angular distri­
bution of the high momentum charged K mesons (10 < p < 24 GeV /c) 
which have been individually identified by means of the RICH detec­
tors of DELPHI. For this purpose, the performances of such detectors have 
been extensively studied. 
The method has the advantage of using charged states, because of the relative 
tight relation expected between the identified K- (K+) with the primary s 
(s). 
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The charged kaon asymmetry evaluated experimentally has been corrected 
for two effects : 

- the contamination of the sample of identified charged kaons by pions; 
- the fake asymmetry induced by the fact that K+ and K- are differently 

absorbed by the detector material. 

The method to extract the ss asymmetry from the resulting charged kaons 
asymmetry allowed us to obtain a precise value for the ss asymmetry at the 
zo pole. The following result is obtained (see ( 6.51)) : 

A~8 = 0.114 ± 0.019(stat.) ± 0.005(syst.) 

The present result can be compared to the measurement of A~8 on 1992 data 
to which we have contributed and which is already published in [2) : 

A~8 = 0.131 ± 0.035( stat.) ± 0.013( syst.) 

No significant difference is observed between both measurements at 1 er level. 

The measurement of A~8 provides : 
• a test of the universality of the electroweak coupling constants which 

predicts the same asymmetry for s-quark and b-quark. Comparing our result 
with the bb pole asymmetry obtained at LEP [1] : 

A~i> = 0.0979 ± 0.0023 

we notice that the measurements are compatible within one standard devia­
tion. 

•a sensitive determination of sin2 
(Jeff (see section 4.4) which corresponds 

to: 

sin2 
Beff = 0.2296 ± 0.0035 

To be compared to the world average [3) : sin2 Bw = 0.2315( 4). On figure 7.1, 
we show the comparison between the measurements of A~8 performed on 1992 
and 1994 data, and the Standard Model prediction (using the simulation pro­
gram ZFITTER with mtop = 175 Ge V / c2 ). It is clearly seen that our result 
is more precise and compatible with the Standard Model predictions. 

Compared to the 1992 measurement, our new analysis presents the following 
advantages: 

• it exploits the originality of the DELPHI detector to be the only 
LEP experiment equipped with RICH detectors. 



Standard 1\-lodel 

1992 

1994 

0.05 0.1 0.15 0.2 0.25 ,3 
As 

180 

Figure 7.1: Comparison between the A~5 measurement on 92 data, 94 data 
and the Standard Model prediction. 

• it presents the first measurement which uses the capability of the DEL­
PHI detector to identify charged particles particularly in the forward 
region, region which is favoured from a statistical point of view by the cross­
section and where the evaluation of the asymmetry is more sensitive. 

• it has been performed on l.35x 106 hadronic zo events registered in 
1994, period during which the largest statistics with a fully operational 
RICH detector (Barrel RICH and Forward RICH) was recorded. 

• it allows to use a purer sample of ss events by the exploitation of the 
Brown and Frank algorithm in the barrel region. 

We have investigated the irnprovernents which could still be brought to 
the present analysis : 

• In order to improve the precision on the measurement of A~5 , we 
have considered the possibility to extend the present method to the whole 
statistics collected by the DELPHI detector at the zo pole between 1992 and 
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1995 with operational RICH detectors. This would lead to a decrease of the 
statistical error by about 30% but at the expense of a thorough study of the 
systematics specific to each data taking period. 

• One could think of selecting hadronic ss events by requiring the pres­
ence of two high momentum charged kaon of opposite charge, one in each 
hemisphere. This would lead to an enriched sample of ss events with purity 
as high as 60% but this advantage would be largely watch out by the con­
siderable reduction of the statistics (of a factor rv 20 ). 

The result presented in the present thesis is already the subject of a DEL­
PHI paper (4] which was submitted to the HEP'97 Conference at Jerusalem 
in August 1997. 
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Appendix A 

Matrix representation 

The metric tensor is : 

(1 
0 0 

jJ µv Q -1 0 
(A.1) 

9µv = 9 = ~ 0 -1 
0 0 

Derivatives with respect to contravariant or covariant coordinates are abbre­
viates as : 

(A.2) 

(A.3) 

The Pauli matrices are : 

1 = (0 1) 7 
1 0 

3 = (1 0) 7 
0 -1 

(A.4) 

In the Dirac representation, the I matrices are defined in the following way : 

0 = (1 0 ) 
I 0 -1 lk = ( _~k ~k) (k = 1, 2, 3) (A.5) 

where 1 is the unit matrix : 

(A.6) 

We also have : 

(A.7) 



Appendix B 

JETSET PS Parameters 

The JETSET 7.3 PS input parameters as optimised in the DELPHI exper­
iment are listed in the following table. For a detailed definition of these 
parameters, the reader is sent to [1]. 

Parameter Reference Value Range 
AQCD 0.4 0.25 - 0.35 
Cut-off value Q0 of parton 1.0 1.0 - 2.0 
Param. a of Lund fragm. funct. 0.5 0.1 - 0.5 
Param. b of Lund fragm. funct. 0.9 0.844 
(]' q 0.35 0.36 - 0.44 
P(1 So)ud 0.5 0.3 - 0.5 
P(3S1)ua 0.5 0.2 - 0.4 
Supp. of ss pair prod. /s/'Yu 0.30 0.27 - 0.31 
P(1So)s 0.4 0.3 - 0.5 
P(3S1)s 0.6 0.2 - 0.4 
Param. Ee of Peterson fragm. funct. - variable 
P(1So)c 0.25 0.26 
P(3S1)c 0.75 0.44 
P(Pstates)c 0. 0.3 
Param. Eb of Peterson fragm. funct. - variable 
P(1So)b 0.25 0.175 
P(3S1)b 0.75 0.525 
P(Pstates)b 0. 0.3 
Supp. of strange diquark prod. bus/'Yua)/(!s/!a) 0.34 0.27 - 0.41 
extra supp. factor for 7J prod. 1.0 0.65 
extra supp. factor for 7]1 prod. 1.0 0.23 

[1] T. Sjostrand, Comp. Phys. Comm. 82 (1994) 74 and DELPHI Coll., 
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P. Abreu et al., Z. Phys. C73 (1996) 11. 
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